
Multi-Agent Path Finding for Schedule Constrained Automation

Kareem Eissa, Rayal Prasad and Ankur Kapoor

Abstract— In modern automation settings, jobs are processed
across numerous machines and are characterized by strong
inter-task dependencies while adhering to limited equipment
availability. When accounting for transportation of jobs be-
tween machines, this gives rise to a complex multi-agent routing
problem with intricate operational limitations. Existing Multi-
Agent Path Finding (MAPF) algorithms used for routing jobs
already consider some aspects such as robustness, uncertainty,
and plan execution. However, these usually require manual
engineering efforts to use in practical applications that involve
scheduling constraints. In this paper, we propose MAPF-SC
– a lifelong variant of MAPF that incorporates scheduling
constraints for a continuous stream of tasks. We propose to
solve MAPF-SC utilizing a Multi-Agent Reinforcement Learn-
ing (MARL) formulation with temporal and team rewards.
Our approach is easily extendable to different constraints
with simple adjustments to the reward design. We investigate
the effects of temporal and topological variations of various
automation scenarios on the performance of our method.

I. INTRODUCTION

State-of-the-art automation settings involve multiple inter-
acting components that require coordinated actions. These
scenarios can be conceptualized as multiple jobs simultane-
ously being transported to successions of machines for task
processing as shown in Fig. 1. Whether it is logistics, man-
ufacturing, or even laboratory automation, the Multi-Agent
Path Finding (MAPF) formulation can be used to address
important as-pects of these target domains such as collision
avoidance, travel time minimization, to ensure optimal and
safe motion between machines. Recent works have shown
significant progress in different variants of MAPF such as the
lifelong version with a continuous stream of goals [7], the
robust version with uncertainty in the envi-ronment execution
[27] and executing the abstracted solution onto real systems
[3].

One key assumption that is prevalent across MAPF vari-
ants is that task processing is instantaneous, which is atypical
in most real-world situations. Even in the popular warehouse
setting, a robot agent delivering a payload would require a
non-instantaneous amount of time at the processing station.
This discrepancy is amplified in domains such as factory
automation, where tasks demand non-trivial processing as a
part of the automation pipeline. The automation workflow
may also be subject to restricted space due to costs or
physical constraints such as ventilation and power require-
ments. Machines may also need additional time for inter-task

Kareem Eissa, Rayal Prasad and Ankur Kapoor are
with Siemens Healthineers Digital Technology and Innova-
tion, 755 College Road East, Princeton NJ 08540, USA
{kareem.abdelrahman,rayal.prasad,ankur.kapoor}
@siemens-healthineers.com

Fig. 1. Example automation scenario. Top: Automation jobs consisting of
multiple tasks with multiple agents. Bottom: Agents (circles) need to plan
collision-free routes to their goals (rectangles) according to the schedule
(Note that machine M3 would expect Job 1 to arrive before Job 2).

requirements such as component switching or decontamina-
tion, usually enforced by the automation pipeline capabilities.
Finally, a job would have a specific sequence of operations
to undergo while machines may expect jobs to arrive in a
particular order, leading to strong precedence constraints.

Existing approaches to solving MAPF with such tempo-
ral aspects have shown promising results (including with
a search-based CBS back bone [26]) but mostly involve
designing heuristics and complex data structures to accom-
modate specific temporal and precedence constraints. Conse-
quently, it is not straightforward to extend these approaches
to the constraints and requirements of other domains. Fur-
thermore, most are developed using simple static layouts
usually modeled on video games or uniformly distributed
warehouses.

In this work, we formulate MAPF-SC (MAPF with
Scheduling Constraints) as a sequential decision-making RL
problem that builds upon recent works such as [20], [21],
[6], and [25]. Our approach incorporates spatio-temporal
encodings and reward mechanisms that can be used to ac-
commodate constraints specific to each use-case. Moreover,
MAPF simulators that support temopral aspects are typically
only designed for specific domains such as [5]. To address
this, we also design a simulator that can be generalized to
arbitrary domains with varying temporal constraints.



Contributions: In this work, we utilize multi-agent re-
inforcement learning (MARL) to solve the MAPF with
scheduling constraints problem. Our contributions are sum-
marized as follows:

• We model the MAPF-SC problem in the MARL frame-
work and design spatio-temporal encodings of the
scheduling constraints as inputs to the neural network.

• We develop a configurable procedural layout generator
that captures real-world restrictions and guidelines.

To investigate the performance of our MARL method,
we study the effects of spatial and temporal characteristics
using a set of domain configurations inspired by real-world
automation configurations.

II. RELATED WORK

Classical MAPF is concerned with finding collision-free
paths for a group of agents from their start locations to their
goal locations. There are many lines of work on solving
MAPF in an optimal [1], bounded suboptimal [2], and
scalable [8] manner. There is also work focusing on adapting
solution methods to incorporate constraints into the classical
setup [13], [15]. The related literature we focus on involves
MAPF variants that factor in time, as well as Reinforcement
Learning approaches to the problem

A. MAPF with Time

Several works have studied temporal aspects of MAPF.
In their recent work, Wang et al [17] focus on minimizing
the violation of task specific due times and formulate three
different objectives: Maximum Lateness to capture the worst
violation of due times, Total Tardiness to capture the total
violation of due times and Total Unit Penalties to capture
the number of tasks with violated due times. More recently,
Gao et al. [16] focus on the maximizing the average customer
satisfaction proportional to the degree of deadline violation.
They model time-windows to represent a transition in vi-
olations starting with a constant satisfaction of 1 until the
early arrival time, after which the satisfaction is a decaying
function proportional to the lateness. In other related work,
Ma et al. [14] focus on the problem of maximizing the
number of agents that reach their goals within a global
deadline, while Zhang et al. [12] focus on the problem
of satisfying precedence-constraints among goal sequences.
While most of the previously cited literature concentrate on
one-shot MAPF, Li et al. [7] propose a framework for solving
lifelong MAPF by modeling it as a sequence of windowed
MAPF instances.

The Flatland environment [5] simulates the railway setting
as a multi-agent problem with the additional constraints
of non-backward motion, arrival deadlines, and departure
schedules. However, trains are allowed to park off the map
before their departure and after their arrival, providing a
degree of variation in the number of agents in the map.
Our approach represents a more general automation scenario
wherein agents maintain a continuous presence on the track,
keeping the agent count constant.

Fig. 2. Example MAPF-SC instance. The bottom XY plane encodes the
spatial information. Agents are represented by circles, goal locations are
represented by black squares, and gray regions are not traversable. Rectan-
gles along the Time dimension represent scheduled goals for the respectively
colored agents. The position of the rectangles represents the earliest arrival
time, and its height represents the duration of the time-window. Processing
times are implicit within the time windows for illustrative purposes.

More recently, CBS-TA-PTC [26] solves MAPF with
some specific precedence and temporal constraints using a
combination of data structures, heuristics, and an optimiza-
tion solver. However, these constraints are particular for the
bomb defusal task and the approach is not easily extendable
to other domains. Furthermore, the one-shot nature of the
algorithm provides practical challenges since it is common
for automation scenarios to assign tasks sequentially. Our
proposed framework addresses both of these – a life-long
approach that can be easily extended to the unique temporal
constraints of any domain.

B. Reinforcement Learning for MAPF

A number of recent works focus on solving MAPF with
Reinforcement Learning (RL). Knippenberg et al. [25] aim to
solve MAPF as a single agent RL problem that incorporates
time constraints on the start and end of tasks. Similar to the
Flatland environment, they provide a dummy starting node
for each agent to wait until its starting time to be deployed
onto the environment. Li et al. [6] propose learning decentral-
ized MAPF policies aggregated with a graph neural network
using imitation learning from expert search-based solvers.
Sartoretti et al. [20] model MAPF as an MARL problem and
utilize expert training to train decentralized policies with a
mixture of imitation learning and RL. In an extension to this,
Damani et al. [21] apply the decentralized policy paradigm
to the lifelong variant of MAPF. More recently, Wang et
al. [23] studied the effects of agent communication and the
size of the local field of view on the decentralized MARL
approach for one-shot MAPF. Our work builds on these



approaches and uses spatio-temporal encodings to allow real-
world scheduling constraints to be incorporated.

III. PROBLEM FORMULATION

The MAPF-SC problem is defined by an undirected
graph G = (V,E), a set of m agents i1, ..., im, and a
schedule S. An example instance is illustrated in Fig. 2.
These agents represent the jobs within the schedule, each
having a sequence of associated tasks. The set of vertices V
corresponds to locations on the graph and the set of edges
E represents motion constraints for each vertex. Each agent
i is assigned a sequence of goals corresponding to vertices
v1i , v

2
i ... according to the schedule. We identify some key

temporal elements that can be used to compose scheduling
constraints for different automation domains. Each element
can be captured by a soft or hard constraint to help model
different scenarios. Specifically, we incorporate:

• Earliest Arrival Time At(i, j) where an agent i is not
allowed at the goal location j before this time.

• Deadline Dt(i, j) where an agent i must be at the goal
location j no later than this time.

• Goal Processing Time Pt(i, j) where the agent i is
stationary at the goal location j for this duration.

• Precedence constraints where multiple agents i1, ..., im
assigned to the same goal location j have to be pro-
cessed in a specific order.

Fig. 3 demonstrates the relationship between these tem-
poral components. Different scenarios can be represented by
adjusting these constraints - for example, classical MAPF
has At(i, j) = Dt(i, j) and Pt(i, j) = 0. Another popular
domain is train scheduling [4], [5] where trains have a
departure time modeled as Pt(i, j) and At(i, j) = 0 for
arrival as early as possible but leave the station by Dt(i, j).
There are no explicit precedence constraints in this scenario,
only those captured by the train timetable i.e., in case of
delays, precedence among trains can be violated. In con-
junction with modifying the rewards, this gives us a simple
yet powerful way to adapt the learned behavior of the agents
to any domain’s requirements. This ability to further modify
constraints through the reward function is a key advantage
of using an RL framework as it requires less manual efforts
than custom heuristics and data structure design.

Fig. 3. Different temporal elements of scheduling constraints.

IV. METHOD

We model agent interactions with the environment as
a Partially Observable Markov decision process (POMDP)
(S,O,A, P,R, γ) where S is the set of environment states,
O is the set of partial observations, A is the set of actions,
P is the transition probabilities, R is the reward function,

and γ is the discount factor. We restrict our environments to
2D grids where each agent is limited to a local field of view
observation [11], [19], [20]. We aim to learn a homogenous
policy that can be deployed to different numbers of agents
and executed in a decentralized manner.

A. Observations

The observation space consists of two main components
to capture spatial and temporal information. The first compo-
nent is the agent’s Local Field of View (FOV) which builds
upon earlier related works [20], [21]. This FOV is centered
on the agent’s current position and consists of channels
denoting obstacles, the presence other agents, other agents’
target locations, the direction towards the agent’s goal, and
a distance heatmap. Finally, a queue channel encodes the
number of other agents that share the same target.

The second component directly encodes the agent’s up-
coming task. The spatial context of the task is represented
through a vector, Gs, as the difference in x/y-coordinates and
the goal distance. We clip this value to a maximum absolute
value of 60 similar to Damani et al. [21]. Concurrently,
the temporal aspects are captured in another vector, τt, that
provides the remaining time until the earliest arrival time At,
the duration until the deadline Dt, and a binary indicator if
the deadline Dt has passed, marking the agent’s delay.

TABLE I
REWARD DESIGN UNDER DIFFERENT SCENARIOS

Event MAPF-SC Flatland MAPF
At goal in [At, Dt] +1.0 +1.0 +1.0
At goal before At -0.1 0.0 0.0
Not at goal after Dt -0.1 -0.1 -0.1
Shared any goal reward +0.2 +0.2 +0.2
Shared any delay reward -0.04 -0.04 0.0

B. Rewards

Contrary to classical MAPF, we do not assign a motion
penalty to minimize the travel distance. Our intuition is that
an agent may have surplus time until its scheduled earliest
arrival time At. Such an agent may potentially take a longer
path to allow other agents to pass through. Taking this
into consideration, minimizing the travel distance may be
detrimental to the throughput due to induced congestion.

In Table I, we show reward realizations for different
constraints in classical MAPF and Flatland [5]. Note how,
for instance, constraints on early arrivals are relaxed in
the MAPF and Flatland columns by simply removing the
negative reward. In our experiments, we focus on the full
problem of MAPF-SC without any relaxations (as shown in
the first column).

In our setup, each agent receives a positive reward when
it reaches its goal within the scheduled time-window. In
contrast, it receives a negative reward for each time step
it occupies its goal before its earliest arrival time At,
to deincentivize congestion at the goal vertices. Similarly,



agents receive a negative reward for each time step it has
not reached its goal past the deadline Dt to help incentivize
arriving on time.

C. Training Setup

We process the local FOV with a three-layer convolutional
neural network (CNN), each layer followed by a max-
pooling operation (except for the last layer which is followed
by a global average pooling operation) to produce a FOV
representation vector. The task vectors (location and time) are
subsequently fed through fully connected layers to produce a
combined task representation vector. Both the FOV and task
representation vectors are then passed through a recurrent
module to incorporate information about past states as a
mitigation strategy for partial observability problems. The
model is optimized with Proximal Policy Optimization (PPO)
[22] which has shown great results in cooperative multi-agent
settings [24].

V. EXPERIMENTS

We design specific scenarios to examine how distinct
spatial and temporal elements impact model performance.
Additionally, we provide a comprehensive overview of the
layout design’s attributes and its influence on input spatial
characteristics. Following this, we adjust the time-windows’
parameters to induce variations in the resulting schedule
slack.

A. Layouts

Most automation plants are restricted by empty space,
machine dimensions, and other safety constraints and hu-
man factors. To investigate the role of different aspects on
performance, we experiment with a set of carefully designed
layouts as shown in the Layout column in Table V-B. These
were inspired by real-world domains (flexible manufacturing
and laboratory diagnostics) where 3-6 machines are usually
placed in straight assembly-line like layouts. The designed
layouts capture variations in restricted tracks connected by
single lane corridors. We vary the layouts across three design
dimensions:

• Redundancy: Lanes are connected to remove dead ends
and provide continuous coverage of the entire layout.

• Size: The number of machines and corresponding lanes
are varied to create small and large layouts with three
and six machines/lanes respectively. The agent count
is adjusted proportionally and set to the number of
machines + 2.

• Padding: Decision regions where agents have more than
two degrees of freedom are padded with additional
vertices.

B. Schedules

In most automation settings, the tasks are finite and are
rate-limited by the machines that process them. Adding
more agents will simply lead to them wait idle and have
sufficient time to navigate the track. This means that as
the number of agents increases in MAPF-SC, the bottleneck

becomes then the schedule itself rather than the path finding
algorithm. To replicate the temporal intricacies found in
automation domains, we introduce variations in schedule
distributions across two dimensions, similar to the approach
in the Flatland environment [4], [5]:

• Single-agent shortest distance (A* factor) which is the
minimum distance traveled by an agent assuming there
are no other agents in the goal.

• Multi-agent estimated congestion where we add the
average of all single agent shortest distances as a
congestion estimate.

These dimensions represent scheduling constraints that
influence the earliest arrival time for each agent providing
minimal necessary conditions for the schedule to be feasible.
Additionally, we vary the size of the time-windows from ear-
liest arrival time to deadline, and the task processing runtime
before completion. Fig. 4 illustrates the two distributions of
schedules we use:

• Tight: A* factor is sampled uniformly from [1, 2] and
task durations are sampled uniformly from [4, 11].

• • Relaxed: A* factor is sampled uniformly from [1.5, 3]
and task durations are sampled uniformly from [5, 25].

We generate schedules specific to each layout using OR-
Tools [18] where the solver optimizes for a randomly sam-
pled list of agent tasks.

Fig. 4. Gantt charts of example schedules. Time is represented on the
X-axis and goal locations (three in this case) are represented on the Y-axis.
Tasks are represented as rectangles with their x-coordinate indicating their
earliest start time and their width indicating duration. Colors correspond to
agents executing each task. Top: Tight parameterization. Bottom: Relaxed
parameterization.

C. Metrics

The primary objective of MAPF-SC is to maximize the
number of goals completed by an agent within its scheduled
time-windows. We measure the relative throughput of goals
completed within the scheduled time-windows normalized
by the ideal schedule execution. This adjusts the comparison



TABLE II
RESULTS FOR CLOSED LOOP AND DEAD END LANE LAYOUTS WITH OPTIONAL PADDING UNDER TWO SCHEDULE DISTRIBUTIONS

Layout Size Padding Redundancy Schedule Total Finishes % On-Time Finishes % Late Finishes %
Mean Std Mean Std Mean Std

6 ✗ ✗ Relaxed 76.26 26.85 46.00 22.46 31.98 18.28
6 ✗ ✗ Tight 90.90 10.01 31.37 14.40 60.29 12.28
3 ✗ ✗ Relaxed 61.85 23.00 11.33 11.30 50.59 20.60
3 ✗ ✗ Tight 82.53 10.23 14.85 10.05 67.78 10.49
6 ✓ ✗ Relaxed 99.53 4.60 94.80 8.87 6.11 7.80
6 ✓ ✗ Tight 99.42 6.24 89.28 8.41 11.72 6.46
3 ✓ ✗ Relaxed 99.90 2.89 97.06 7.17 3.72 7.24
3 ✓ ✗ Tight 99.52 6.04 97.17 7.60 2.93 4.98
6 ✗ ✓ Relaxed 99.74 3.91 95.41 6.63 5.79 6.30
6 ✗ ✓ Tight 99.59 5.08 93.61 8.72 7.00 7.35
3 ✗ ✓ Relaxed 99.71 4.11 96.66 6.27 4.27 5.85
3 ✗ ✓ Tight 99.57 3.95 88.98 11.41 12.22 10.83
6 ✓ ✓ Relaxed 99.99 0.00 97.72 3.44 3.13 4.14
6 ✓ ✓ Tight 99.99 0.06 96.22 3.40 4.71 3.82
3 ✓ ✓ Relaxed 99.19 6.72 96.69 9.01 3.38 5.80
3 ✓ ✓ Tight 99.99 0.11 98.01 2.63 2.58 3.04

to help understand the effects of different time-window
distributions on the performance of the RL models. We
report the mean and standard deviation across 1000 randomly
generated schedules.

VI. RESULTS AND DISCUSSION

Through the experiments, we note that the model tends
to complete more goals on-time on a relaxed schedule
versus a tight one. Intuitively, this reflects a less constrained
optimization problem since agents have less restricted time-
windows to reach their goals.

In the closed-loop layouts (layouts 5-8 in Table V-B), we
find that the agents learn to maintain a state of steady flow by
circling the track. Upon nearing their earliest arrival times,
we observe deviation from this behavior as agents move
directly towards their goals. This continuous flow behavior
globally reduces congestion.

In the padded layouts with dead end lanes (layouts 3 and
4 in Table V-B), agents learn maneuvering behaviors through
the padded sections surrounding the decision regions. Agents
also tend to use these padding vertices as “parking” to wait
for their scheduled goals without blocking other agents. In
the most restrictive scenarios i.e., unpadded layouts with

Fig. 5. Average completed tasks during training. Light and dark blue
colors correspond to Layout 1 and 2 in Table V-B respectively. Light gray
corresponds to the remaining layouts in Table V-B Tight schedules have a
higher absolute number of tasks than their relaxed counterparts for the same
finite horizon.

dead end lanes (rows 1 and 2 in Table V-B), we observe
a noticeable drop in performance compared to the other
scenarios.

However, the most restrictive scenarios (layouts 1 and 2
in Table V-B) suffer from performance degradation. Counter-
intuitively, their performance is better on the tight schedules
than on the relaxed ones. In general, we find these instances
to be less stable in training and the RL policy often collapses
without converging to acceptable performance levels. More
restrictive optimization problems induce harder underlying
MDPs which destabilizes the RL training [9].

The training curves in Fig. 5 contrast the difference in
convergence between the most restrictive scenarios and all
other scenarios. The less restrictive scenarios (layouts 3-8
in Table V-B) almost converge near 10k episodes while the
most restrictive scenarios progress slower by an order of
magnitude.

We hypothesize that the performance degradation in the
more restrictive scenarios has to do with the increasing plan-
ning complexity arising from the restrictive maneuverability
of the layouts. These restricted layouts yield configurations
that require long-horizon swapping maneuvers with higher
degrees of agent coordination.

VII. PROCEDURAL LAYOUT GENERATION

To extend our methods to more realistic automation do-
mains, we incorporate the layout configuration parameters
from our experiments and design a procedural layout genera-
tion algorithm. The generator also considers other uncontrol-
lable aspects present in most automation plants such as non-
empty spaces, operational restrictions, and safety constraints.
For example, a machine may require special power consump-
tion or ventilation which limits on its placement as well as
input and output ”lanes” connected to it. Our generator is
parameterized by the following:

• Layout: Determines the dimensions of the floorplan.
Optionally random sample permanent obstacles such as



Fig. 6. Layout generation procedure example

building columns where no machines nor humans may
traverse.

• Machine: Randomly sample locations with dimensions
and accessibility requirements that affect its orientation
as well as inputs and outputs.

• Lanes: Determine redundancy and padding as well as
degrees of freedom in motion e.g., single direction
conveyor belt. Optionally post processed to trade off
between initial cost and operational efficiency through
redundancy.

• Schedules: Parameterization based on number of agents
and shortest path factors as described in the experiments
section.

The generation algorithm is as follows: We start by
initializing a layout as an empty 2D grid and randomly
sample some permanent obstacles such as building columns.
These obstacles are masked out from the grid and are not
traversable by any entity. Next, we initialize a set of machines
as goal locations in the MAPF-SC instances, sampled from
a distribution of sizes and orientations. An optional step is
to orient the machines towards their center of mass such that
the generated track lanes are circular.

To generate the track lanes we compute the pairwise
shortest path between all modules using the track redundancy
and padding parameters. However, this leads to an overly
redundant track so we refine it by computing a tour formu-
lated as the Traveling Salesperson Problem (TSP) problem.
This ensures that all modules are inter-reachable with optimal
usage of track lanes.

It is usually required (for maintenance purposes) that all
machines are human accessible. However, in most cases, a
human cannot walk the same lanes as the agents. This con-
straint may be relaxed in some domains such as warehouses
where both humans and machines may walk on the same
floors. During generation, some machines may be completely
surrounded by track lanes and inaccessible for humans. To
solve this issue we introduce additional obstacles for human
traversal and re-plan the track lanes. Finally, this layout is
used to generate schedules of different parameterizations
as described previously in the experiments section. Fig. 6
illustrates the procedural generation process.

Our experiments and analysis on the restricted layouts
in Table V-B highlight the importance of redundancy or
”padding” to allow for smooth agent flow. When we trained

and evaluated on a variety layouts with redundancy, the
models produced were capable of meeting almost all of the
goals within their time-windows. We attribute this level of
performance primarily to the layout as we observe that agents
learn traffic-like behaviors such as using parallel lanes for
opposite traffic flow.

By designing custom layouts and incorporating the flexible
constraint composition of our proposed MAPF-SC approach,
we provide a simple framework to adapt MAPF for any
automation domain. One can easily shape the reward function
to help agents learn the required behavior, while using
the generator to create high-fidelity spatial and temporal
environments to train these agents on.

VIII. CONCLUSION

In this paper, we proposed a variant of the MAPF problem
to address scheduling constraints. We proposed a MARL
framework to solve MAPF-SC using shared rewards and
spatio-temporal observations. We studied aspects affecting
the efficiency of our method under different layouts pa-
rameterizations and schedule distributions. Our empirical
investigations showed that our model achieves near perfect
schedule execution for most scenarios and identified hard
constraints that hinder throughput. To generalize our findings
to real-world automation domains, we design a configurable
procedural layout generator that allows training custom RL
models for different domain requirements.

IX. DISCLAIMER

The concepts and information presented in this paper are
based on research results that are not commercially available.
Future commercial availability cannot be guaranteed.

REFERENCES

[1] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-Based
Search For Optimal Multi-Agent Path Finding,” AAAI, vol. 26, no. 1,
pp. 563–569, Sep. 2021, doi: 10.1609/aaai.v26i1.8140.

[2] J. Li, W. Ruml, and S. Koenig, “EECBS: A Bounded-Suboptimal
Search for Multi-Agent Path Finding,” AAAI, vol. 35, no. 14, pp.
12353–12362, May 2021, doi: 10.1609/aaai.v35i14.17466.

[3] J. Chudý and P. Surynek, “ESO-MAPF: Bridging Discrete Plan-
ning and Continuous Execution in Multi-Agent Pathfinding,”
AAAI, vol. 35, no. 18, pp. 16014–16016, May 2021, doi:
10.1609/aaai.v35i18.17997.



[4] F. Laurent et al., “Flatland Competition 2020: MAPF and MARL
for Efficient Train Coordination on a Grid World,” in Proceedings
of the NeurIPS 2020 Competition and Demonstration Track, H. J.
Escalante and K. Hofmann, Eds., in Proceedings of Machine Learn-
ing Research, vol. 133. PMLR, Dec. 2021, pp. 275–301. [Online].
Available: https://proceedings.mlr.press/v133/laurent21a.html

[5] S. Mohanty et al., “Flatland-RL: Multi-Agent Reinforcement Learning
on Trains,” 2020, arXiv. doi: 10.48550/ARXIV.2012.05893.

[6] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph Neural Networks
for Decentralized Multi-Robot Path Planning,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA: IEEE, Oct. 2020, pp. 11785–11792. doi:
10.1109/IROS45743.2020.9341668.

[7] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and S.
Koenig, “Lifelong Multi-Agent Path Finding in Large-Scale Ware-
houses,” in Proceedings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems, in AAMAS ’20. Richland,
SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2020, pp. 1898–1900.

[8] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig, “MAPF-
LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neigh-
borhood Search,” AAAI, vol. 36, no. 9, pp. 10256–10265, Jun. 2022,
doi: 10.1609/aaai.v36i9.21266.

[9] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Master-
ing Diverse Domains through World Models,” 2023, arXiv. doi:
10.48550/ARXIV.2301.04104.

[10] Q. Li, W. Lin, Z. Liu, and A. Prorok, “Message-Aware Graph
Attention Networks for Large-Scale Multi-Robot Path Planning,” IEEE
Robot. Autom. Lett., vol. 6, no. 3, pp. 5533–5540, Jul. 2021, doi:
10.1109/LRA.2021.3077863.

[11] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems,
S. Lahlou, et al., “Minigrid & Miniworld: Modular & Customiz-
able Reinforcement Learning Environments for Goal-Oriented Tasks,”
2023, arXiv. doi: 10.48550/ARXIV.2306.13831.

[12] H. Zhang, J. Chen, J. Li, B. C. Williams, and S. Koenig, “Multi-Agent
Path Finding for Precedence-Constrained Goal Sequences,” in Pro-
ceedings of the 21st International Conference on Autonomous Agents
and Multiagent Systems, in AAMAS ’22. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2022,
pp. 1464–1472.

[13] P. Surynek, T. K. S. Kumar, and S. Koenig, “Multi-agent Path Finding
with Capacity Constraints,” in AI*IA 2019 – Advances in Artificial
Intelligence, vol. 11946, M. Alviano, G. Greco, and F. Scarcello, Eds.,
in Lecture Notes in Computer Science, vol. 11946. , Cham: Springer
International Publishing, 2019, pp. 235–249.

[14] H. Ma, G. Wagner, A. Felner, J. Li, T. K. S. Kumar, and S. Koenig,
“Multi-agent path finding with deadlines,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence, in IJCAI’18.
Stockholm, Sweden: AAAI Press, 2018, pp. 417–423.

[15] W. Hoenig et al., “Multi-Agent Path Finding with Kinematic

Constraints,” ICAPS, vol. 26, pp. 477–485, Mar. 2016, doi:
10.1609/icaps.v26i1.13796.

[16] J. Gao, Q. Liu, S. Chen, K. Yan, X. Li, and Y. Li, “Multi-Agent Path
Finding with Time Windows: Preliminary Results,” in Proceedings
of the 2023 International Conference on Autonomous Agents and
Multiagent Systems, in AAMAS ’23. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2023,
pp. 2586–2588.

[17] H. Wang and W. Chen, “Multi-Robot Path Planning With Due Times,”
IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4829–4836, Apr. 2022,
doi: 10.1109/LRA.2022.3152701.

[18] L. Perron and V. Furnon, OR-Tools. (May 07, 2024). Google. [Online].
Available: https://developers.google.com/optimization/

[19] A. Skrynnik, A. Andreychuk, K. Yakovlev, and A. I. Panov,
“POGEMA: Partially Observable Grid Environment for Multiple
Agents,” 2022, arXiv. doi: 10.48550/ARXIV.2206.10944.

[20] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and
Imitation Multi-Agent Learning,” IEEE Robot. Autom. Lett., vol. 4,
no. 3, pp. 2378–2385, Jul. 2019, doi: 10.1109/LRA.2019.2903261.

[21] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti, “PRIMAL2:
Pathfinding Via Reinforcement and Imitation Multi-Agent Learning
- Lifelong,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2666–2673,
Apr. 2021, doi: 10.1109/LRA.2021.3062803.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” 2017, arXiv. doi:
10.48550/ARXIV.1707.06347.

[23] Y. Wang, B. Xiang, S. Huang, and G. Sartoretti, “SCRIMP: Scalable
Communication for Reinforcement- and Imitation-Learning-Based
Multi-Agent Pathfinding,” in Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, in AA-
MAS ’23. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2023, pp. 2598–2600.

[24] C. Yu et al., “The surprising effectiveness of PPO in cooperative multi-
agent games,” in Proceedings of the 36th International Conference on
Neural Information Processing Systems, in NIPS ’22. Red Hook, NY,
USA: Curran Associates Inc., 2024.

[25] M. van Knippenberg, M. Holenderski, and V. Menkovski, “Time-
Constrained Multi-Agent Path Finding in Non-Lattice Graphs with
Deep Reinforcement Learning,” in Proceedings of The 13th Asian
Conference on Machine Learning, V. N. Balasubramanian and
I. Tsang, Eds., in Proceedings of Machine Learnfing Research,
vol. 157. PMLR, Nov. 2021, pp. 1317–1332. [Online]. Available:
https://proceedings.mlr.press/v157/knippenberg21a.html

[26] Yu Quan Chong, Jiaoyang Li, Katia Sycara, “Optimal Task Assign-
ment and Path Planning using Conflict-Based Search with Precedence
and Temporal Constraints,” in AAMAS ’24: Proceedings of the
23rd International Conference on Autonomous Agents and Multiagent
Systems, 2024, pp. 2210-2212.

[27] Shahar, T.; Shekhar, S.; Atzmon, D.; Saffidine, A.; Juba, B.; Stern, R.
2021. Safe Multi-Agent Pathfinding with Time Uncertainty. Journal of
Artificial Intelligence Research 70.


