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Abstract

In multi-agent systems, when we account for the possibility
of delays during execution, online planning becomes more
complicated, as both execution and planning should be able
to handle delays when agents are moving. Lifelong Multi-
Agent Path Finding (LMAPF) is the problem of (re)planning
the collision-free moves of agents to their goals in a shared
space, while agents continuously receive new goals. PIE
(Planning and Improving while Executing) is a recent ap-
proach to LMAPF which concurrently replans later parts of
agents’ trajectories while execution occurs. However, the ex-
ecution is assumed to be perfect. Existing approaches either
use policy-based methods to quickly coordinate agents every
timestep with instant delay feedback, or deploy an execution
policy to adjust a solution for delays on the fly. These ap-
proaches may introduce large amounts of unnecessary delays
to agents due to their planner guarantees or simple delay-
handling policies. In this paper, we extend PIE to define a
framework for solving the lifelong MAPF problem with ex-
ecution delays. We instantiate our framework with different
execution and replanning strategies, and experimentally eval-
uate them. Overall, we find that this framework can substan-
tially improve the throughput by up to a factor 3 for lifelong
MAPF, compared to approaches that handle delays with sim-
ple execution policies.

Introduction
When planning online, planners are under time pressure, as
agents may have to wait for the planner to compute the solu-
tion for execution. An efficient way to handle this problem
is concurrent planning and execution (Karaman et al. 2011;
Hönig et al. 2019; Zhang et al. 2024). That is, for a given
parameter k ≥ 1, at timestep t, the planner commits to ex-
ecuting the next k steps of the current plan. During times
steps t..t + k − 1 it computes/improves the remainder of
the plan. This repeats every k timesteps. However, in multi-
agent systems, unexpected delays can occur in execution,
due to mechanical differences, communication delays, robot
dynamics, etc. When delays occur, two desynchronisation
problems arise when following the plan:

• Problem (1): the committed plan may be invalid, because
directly executing the paths may cause conflicts;
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Figure 1: Motivating examples (Snap-shot for timestep 1).
Due to delays, a1 cannot execute the first action (B3 to B2)
and stays at B3. Scenario (a) assumes every agent executes
its given path directly, resulting a conflict. Scenario (b) uses
simple execution policies, which wait for a2 to traverse B2
first. Grey line is the executed path.

• Problem (2): the uncommitted plan may be invalid, as
the planner assumes agents start from the last location
on their committed path, but their actual position after k
timesteps may not match the committed plan.

Figure 1 shows examples of such problems. Suppose the
planner is executing the first k = 2 steps of the plan, mean-
while, the planner is computing the future plan assuming a1
starts at B1 and a2 starts at B2. In Scenario (a), a2 directly
moves to A2 according to its given path. Then both agents
want to occupy B2 at timestep 2, and therefore, cause Prob-
lem (1). In Scenario (b), a2 follows a fixed execution pol-
icy: in case of delay, to wait for a1 to enter and leave B2
first, at the end of the commit window leaving a1 at location
B2 and a2 at location A2, which causes Problem (2). Thus,
if the planner is building new future paths assuming agents
follow the committed plan without delays, these future paths
may be infeasible due to the deviations between the actual
location of each agent and their expected locations.

Lifelong Multi Agent Path Finding (LMAPF) (Stern et al.
2019; Ma et al. 2017; Li et al. 2021b) is an important prob-
lem in multi-agent systems, which requires coordinating the
simultaneous actions of agents so that they reach continu-
ously assigned new target locations without any collisions.
It is the main abstraction for many practical applications,
such as autonomous warehouses (Li et al. 2021b), unmanned
aerial vehicles (Ho et al. 2019, 2022) and autonomous ve-
hicles (Li et al. 2023). In LMAPF, one way to handle de-
lays is through offline k−robust planning, i.e. their execu-
tion is safe with up to k timestep of delays (Atzmon et al.



2018, 2020; Chen et al. 2021). However, this method sac-
rifices solution quality for safety, making plans longer than
necessary. It also cannot handle delays longer than k time
steps and requires replanning in such cases. Alternatively,
delays can be managed by online planning, such as plan-
ning in a step-by-step manner using policy-based planners
like PIBT (Okumura et al. 2022; Okumura, Tamura, and
Défago 2021). These methods are efficient when agents need
to frequently adjust their paths due to changes and poten-
tial delays, as their computation time is negligible. However,
limiting to only lookahead one step often leads to poor so-
lution quality. Another approach to tackle these disadvan-
tages is building optimised execution policies from an of-
fline near-optimal plan. For example, in (Ma, Kumar, and
Koenig 2017; Hönig et al. 2019), authors propose to build a
dependency graph from the given plan and follow it to ex-
ecute agents, which solves Problem (1). Hönig et al. (2019)
further apply this approach in LMAPF. To solve Problem
(2), the authors propose to only execute the future plan af-
ter all robots have reached the last location of the current
committed path with execution policies. However, it intro-
duces additional delays for agents to synchronise. For ex-
ample, one agent’s delay before its last action will cause all
other undelayed agents to wait in place.

In this paper, we handle the two problems raised by delay
probabilities in LMAPF. Our first contribution is the intro-
duction of a framework that effectively manages this prob-
lem while maintaining persistent execution and minimising
unnecessary waiting. This framework combines replanning
and execution policies. Following Zhang et al. (2024), we
call this new framework Planning and Improving while Exe-
cuting with Delay Probabilities (PIE-D). Our second contri-
bution is that we instantiate PIE-D with different replanning
strategies and execution policies and run large-scale empir-
ical evaluations. We show that our framework outperforms
two existing delay-handling baselines with up to three times
throughput improvement in LMAPF.

Preliminaries
In this section, we introduce our problem setting: LMAPF
with delay probabilities. We begin by defining the LMAPF
problem, then describing the concurrent framework and in-
corporating the delay model. Then we discuss existing ways
of handling delays.

Problem Setting
Lifelong MAPF The input consists of an undirected grid
map G = (V,E), where V is a set of vertices (grid cells)
and E is a sequence of edges that connects adjacent cells,
and a set of m agents A = {a1, . . . , am}, where each agent
has a start location and a set of goal locations. We assume
that the goals are assigned by a Task Oracle (TO) and we do
not know all the goal locations assigned to each agent a pri-
ori. In this work, we follow the LMAPF setting in Li et al.
(2021b) where the goal assignment from TO is not within
the planner’s control and we only reveal enough goals to
each agent so that the agents’s path is always longer than
a commit window k. Time is discretised into timesteps. At

each timestep, each agent can either perform a move action,
that transits from the current location to an adjacent loca-
tion, or a wait action, that stays at the current location for
this timestep. Each action takes 1 second to execute. A ver-
tex conflict occurs when two agents occupy the same ver-
tex at the same time, while an edge conflict occurs when
two agents traverse the same edge at the same time (Stern
et al. 2019). The task for the planner is to plan a conflict-
free solution, which consists of m paths, one for each agent,
that transit each agent from its start to all the goal locations.
The objective is maximising throughput, which is the av-
erage number of tasks finished per timestep (i.e., the total
number of goals reached divided by total time).
Concurrent Planning and Execution in LMAPF The ex-
isting solution for solving online LMAPF is concurrent plan-
ning and execution (Hönig et al. 2019; Zhang et al. 2024).
One leading framework is called Planning and Improving
during Execution (PIE) (Zhang et al. 2024), in which the
planner fully utilises execution time to plan and improve
agents’ paths. This framework iteratively commits a win-
dow of k steps of the solution for execution. This commit-
ment refers to a decision point regarding the next portion of
a planned trajectory, which means no further modifications
to the planned portion will occur. During the execution, the
planner continuously plans and refines solutions beyond this
committed window. PIE reports high throughput for Life-
long MAPF problems. However, in PIE, the planning as-
sumes perfect execution without delays and the locations of
agents at the end of the commit window are assumed known,
which is not true if delays are possible.
Delay Model In the real world, agents do not execute their
plans perfectly. Sometimes they are delayed. We model de-
lays by following MAPF with Delay Probabilities (MAPF-
DP) (Ma, Kumar, and Koenig 2017). In MAPF-DP, during
the execution, an agent has a probability p to get delayed at
its current location for a period of time l ∈ [dmin, dmax]
instead of moving to the next location according to its com-
puted path. In addition to the MAPF-DP model, we make
two realistic assumptions: (1) The original MAPF-DP model
requires the execution to avoid the so-called following con-
flicts to simplify the execution policy implementation. Simi-
lar to Su, Veerapaneni, and Li (2024), we extend the MAPF-
DP by allowing the following conflicts. (2) In some MAPF-
DP settings, e.g., simulated railway networks (Laurent et al.
2021), the l duration of delay is known at the time the de-
lay occurs. This knowledge allows the planner to incorpo-
rate the delay duration into future decisions. In this paper,
we consider a more realistic and common setting where l is
unknown to the planners.

Delay Recovery Approaches
One way to handle delays is to dynamically reschedule
agents along their planned paths. This type of approach is
called an execution policy. The Minimal Communication
Policy (MCP) (Ma, Kumar, and Koenig 2017) is a com-
plete plan-execution policy. It works by identifying critical
dependencies between the vertex usage of agents, which is
equivalent to the idea of Temporal Plan Graph (TPG) or Ac-
tion Dependency Graph (ADG) (Hönig et al. 2019) on grid-



Figure 2: Overview of PIE-D framework. In each k-step ex-
ecution window (wn), the Executor (E) executes the path
from the current commit, while the Planner (P) is plan-
ning paths for the future commit windows in parallel. The
Dummy Simulation (D) is invoked between each window.

based MAPF problem, and outputs move commands that
follow these dependencies during plan execution. In Figure 1
there is dependency between a1 and a2 at B2, in the plan a1
gets to use B2 first. Recent studies optimise the dependency
graph by switching dependencies (Su, Veerapaneni, and Li
2024; Feng et al. 2024). In (Kottinger et al. 2024), authors
also propose a similar approach that rescheduling agents by
introducing delays in their original paths. These advances
can reduce the amount of unnecessary waiting by allowing
certain agents to move first, but require additional computa-
tional overhead for an online environment.

Another way is using existing planning approaches to re-
plan (Li et al. 2021b). However, in online LMAPF, agents
may need to stop and wait for a feasible plan to be com-
puted. In this case, Priority Inheritance with Backtracking
(PIBT) (Okumura et al. 2022) can be used. PIBT is a single-
step planning approach to coordinate agents’ movements
and avoid collisions. It can rapidly compute next collision-
free actions to recover from delays. Okumura, Tamura, and
Défago (2021) further enhanced PIBT by using a given
MAPF plan as a hint, which is equivalent to use PIBT as
an execution policy to execute the MAPF plan. We call this
approach PIBT-I in this work. However, this approach does
not guarantee a feasible execution.

Planning while Executing with Delays
To solve LMAPF with delays, existing approaches either
through planning, which may suffer from the trade-offs of
solution quality and computation time; or through execution
policy, which may lead to unnecessary delays of synchro-
nising between the planner and execution. In this section,
we show a new framework to solve this problem that com-
bines the advantages of both approaches while mitigating the
effects of delays. We call it Planning and Improving while
Executing with Delay Probabilities (PIE-D).

Components As shown in Figure 2, this framework con-
tains the following components:

• Planner (P) is responsible for generating and improving
plans while agents are moving. It has three functions, in-
cluding (1) initial path planning before starting execution
(2) replanning for agents that have new goal locations or
are different from their original path due to delays, and
(3) using any remaining time to improve the current fea-
sible solution with MAPF-LNS (Li et al. 2022).

• Executor (E) refers to the real-time execution of agents,
which manages the actual movement of agents according

Algorithm 1: PIE-D Framework

Require: ⟨G,A⟩; k, Commit Window, P, Planner; E, Executor; D,
Dummy Simulation

1: π ← P.Initial Planning(A)
2: while not interrupted do
3: states← E.Get Current States()
4: πk, A.starts, A.goals← D.Simulate(π, states)
5: π ← π \ πk

6: In parallel do:
7: E.execute(πk, k))
8: π ← P.Plan(⟨G,A⟩, π)

to the given plan. It ensures that the agents follow the
plan as closely as possible. To handle execution delays,
the Executor follows an execution policy, for example,
MCP, to ensure feasibility.

• Dummy Simulation (D) mitigates the desynchronisation
problem by simulating the next commitment. After the
current k−step execution, there may be actions that are
committed but not executed due to delays. The Dummy
Simulation will get those actions, and append the next
planned actions together to run a k−step simulation for
the next commit window, assuming no delays, to predict
the next k−actions that commit for the next execution,
and the next start/goal locations for the next planning
phase. In other words, the Executor will follow the sim-
ulated commitment to execute, and the planner uses the
prediction to plan and improve future plans.

Algorithm As shown in Algorithm 1, the framework starts
with the Planner component generating an initial path plan,
π, for all agents (line 1). Then the framework retrieves the
current states, including the current location for each agent,
and any path that is committed to the Executor but not exe-
cuted (line 3). Then the Dummy Simulation simulates the
next k steps πk based on states and π, and predicts the
A.starts, which are agents’ locations at the end of k steps,
and A.goals, which are the updated goal locations if agents
should arrive at their current goal locations in their next k
steps (line 4). Then πk is committed to the Executor (line 5)
for execution. As the Executor executes πk for k steps (line
7), the future path after πk, π, is simultaneously planned and
improved by the plan function in Planner (line 8). During
planning, we first select the subset of agents A′ that need
replanning. This includes agents that have infeasible paths
due to delays or empty paths due to update in goals. If A′ is
not empty, the Planner first replans a feasible solution. Then
the Planner continues to improve the plan until the execution
finishes. The same concurrent planning and executing then
dummy simulation process continues as long as the system is
not interrupted (e.g., simulation timestep limit not reached).
Note that Dummy Simulation, line 4, takes negligible time.

Example We use Figure 1 as an example to illustrate the
process. Now suppose we commit k = 1 step each time and
the execution policy we use is MCP.

First, after initial planning, we input: (1) the first action
from the Planner (B3 → B2 for a1 and A1 → A2 for a2);
and (2) the current states and the unexecuted path from the



Executor, to the dummy simulation. We run the dummy sim-
ulation with the inputs and assume there are no delays. Since
all agents are at the start. After the dummy simulation, the
commits remain unchanged, which means the dummy simu-
lation outputs: (1) the path A1 → A2 for a1 and B3 → B2
for a2 to the Executor; and (2) the start locations A2 and B2
are sent to the Planner. Then during the execution (timestep
0 to timestep 1), the Planner is planning for these two agents
from A2 and B2. At timestep 1, in the Executor, a1 is at B3
due to delays and a2 is at A2. A part of a1’s path, which
is B3 → B2 → B1, has not been executed. In the Plan-
ner, the first actions are B2 → B1 for a1 and A2 → B2
for a2. We then input them into the dummy simulation. In
the simulation, we simulate the path B3 → B2 → B1 for
a1 (combine the unexecuted path in the Executor and next
k = 1 action in the Planner) and A2→B2 for a2 with no
delays. Following MCP rules, a2 needs to stay to let a1 tra-
verse B2 first. Therefore, after simulation, the path becomes
B3→B2→B1 for a1 and A2→A2→B2 for a2. Now the
simulation outputs: (1) the first actions from the simulated
path (B3→B2 for a1 and A2→A2 for a2) to the Execu-
tor; and (2) the start locations sent to the Planner, which are
B3 and A2 for these two agents. The same concurrent plan-
ning and execution then simulate process repeats until being
interrupted. Note without this simulation, the Planner will
assume agents start with a1 at B1 and a2 at B2, which is
incorrect as the agents cannot reach these two locations in
the next execution window.

Instantiations of PIE-D
In this section, we discuss different possibilities to instanti-
ate PIE-D, including execution policies and planners.

Execution Policy Choices We consider execution policies
that are fast and able to react in real-time while agents are
moving. The choices of execution policies are as follows:

MCP: Minimal Communication Policy (Ma, Kumar, and
Koenig 2017) dynamically re-schedules agents’ move ac-
tions in the event of delays. MCP guarantees successful
completion of an initially feasible plan, but introduces un-
necessary waits to maintain dependencies between actions.
For instance in Scenario (b) of Figure 1, to ensure the com-
plete execution of the given MAPF solution, the undelayed
a2 needs to wait for a1, which has a higher priority in the
visiting order of location B2, and when the higher priority
a1 gets delayed, both agents are delayed (a2 cannot reach
B2 until a1 leaves B2). In concurrent planning and execu-
tion, agents have the opportunity to replan when they deviate
from the planned paths. Thus, strictly maintaining action de-
pendencies is not essential.

PIBT-I: (Okumura, Tamura, and Défago 2021) use time-
independent paths as a hint to attempt to plan for agents
to follow the paths. Given a MAPF plan, PIBT-I extracts
a time-independent path p′i for each agent ai that omits
any waits. Then at each timestep, PIBT plans the next ac-
tions following a priority. For each agent ai, it attempts to
follow p′i by moving towards a location v ∈ p′i selected
as follows. Given agent ai currently at location c, (1) if
c ∈ p′i and j is the index of c on p′i, indicating c = p′i[j],

v = p′i[min(j + 1, |p′i| − 1)] is the location after index j,
any location, except the goal location of ai, at or before
j are then deleted from p′i, (2) otherwise, v is chosen as
the nearest location on p′i to c. When the desired location
of a higher-priority agent is occupied by a lower-priority
agent, the lower-priority agent temporarily inherits the pri-
ority of the higher-priority agent to move first to give way
to the higher one. If the lower-priority agent has no choice
but to wait, the algorithm backtracks to the higher-priority
agent to look for other available actions. This approach does
not maintain the action dependencies in π, which can alle-
viate the unnecessary waiting introduced by MCP-like ap-
proaches, such as Scenario (b) in Figure 1 (a2 may enter B2
before a1). However, directly following a time-independent
path may cause large differences between the execution re-
sults and the original plan. For example, the wait actions in
the original plan may be essential to avoid future conflicts
with other agents. Simply Removing them leads to potential
conflicts. In this case, agents may be pushed away from their
path to avoid collisions, and the planned future paths may
become useless, as agents end up far from their expected
next window start locations. Moreover, more agents may re-
quire replanning in the next execution phase.

PIBT-D: To take more advantage of the time-dependent
paths in the current solution, we propose to use PIBT to fol-
low the original time-dependent plan (PIBT-D) to move in-
stead of a time-independent plan and let agents with less de-
lay choose to move first. That is, at each timestep t, PIBT
will first prioritise agents based on the number of delays oc-
cured. This means an agent with a smaller number of de-
lays can choose its next action first. Then when deciding the
next action for that agent, this policy will move agents to
the location that is nearest to the location on t in their time-
dependent plan. By doing so, the execution has fewer agents
affected by delayed agents and for those are not affected,
they follow the original plan as much as possible.

Planner Choices We use the planner in PIE (Zhang et al.
2024), which guarantees to always return a feasible solu-
tion within a given execution time and reports the highest
throughput against other frameworks. PIE leverages a fast
solver to quickly compute a solution and uses an anytime
solver to optimise the uncommitted paths during execution.
In PIE, if an agent arrives at its goal within the commit win-
dow, the planner directs it to a dummy goal and assumes it
disappears 1 after the window. This ensures the feasibility
of the commitment if future goals are not revealed to plan-
ner. In this work, we use the same approach but direct agents
to subsequent goals instead since we always reveal enough
goals. PIE assumes perfect executions. However, when delay
events occur, the planner needs to replan for agents affected
by delays. We consider the following planners in PIE-D:

Replan Affect: Similar to the approach proposed by
Zhang et al. (2024), we modify it to replan agents with new
goals and those affected by delays, known as Replan Affect.

1Disappearance means the agent disappears from the plan, but
not the map, since it will always get a goal and be replanned for the
next commit window. PIE directs agents to a dummy goal because
it assumes only one task is revealed to each agent.



Figure 3: An example of the computed Guidance Heuristic.
Suppose the original path from A5 to E1 is: A5 → A4 →
A4 → A3 → B3 → C3 → D3 → D4 → D5 → D4 →
D3 → E3 → E2 → E1. After removing wait actions and
the loop (marked as the light blue curve on the map), the
guidance path is A5 → A4 → A3 → B3 → C3 → D3 →
E3 → E2 → E1 (marked as dashed deep blue on the map).
Then the heuristic is a pair, with the first value on each grid
cell indicating the distance to the nearest guidance location,
and the second value indicating the distance from the near-
est guidance location to the goal on the guidance path. When
calculating heuristics, the heuristic is the sum of the two val-
ues, tie-breaking on the first value.

Replan Affect reports high throughput when only replan-
ning for agents with new goals. However, when delays oc-
cur, more agents are required to replan, which consumes sig-
nificantly longer runtime. Thus, this approach suffers from
timeout failures under stringent time constraints in online
problems, especially as the number of affected agents grows.

Simulate then Replan: Since approaches like MCP en-
sure the feasible execution of a plan, the planner first simu-
lates the execution of the existing plan using MCP, assuming
no additional delays. The simulation provides the planner
with a feasible plan that has mitigated the influence of delays
(Li et al. 2021a). The planner then replans agents with new
goals. This method reduces the overall computational load
by avoiding replanning for delayed agents. However, since
MCP may introduce unnecessary waits to agents affected by
delays, the simulated plan may be inefficient. Additionally,
this approach only works if the execution policy in the Ex-
ecutor is complete and action dependencies are preserved.

Replan All with Partial Solution as Guidance: Another
way to quickly obtain a collision-free solution is to use a
faster and more scalable solver. In Zhang et al. (2024), the
authors use LaCAM* (Okumura 2023) as a replanner to re-
plan for all agents, referred to as Replan All. LaCAM* of-
fers the advantages of rapid planning and high scalability,
but it may suffer from poor solution quality, and requires
additional time for improvement. More importantly, Replan
All plans for all agents from scratch and discards the uncom-
mitted paths, in which the planner spent significant effort to
improve quality. To mitigate this, we use paths from the pre-
vious planning phase (optimised but outdated due to delays)
as guidance to warm-start the search. This way the search
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Figure 4: Throughput of differing Replanning (MCP, PIBTI
and PIBTD) and After-Goal strategies (F: Replan Affect, S:
Simulate then Replan and A: Replan All with Partial Solu-
tion as Guidance). Note S is only compatible with MCP. p is
the delay probability.

quickly returns high-quality solutions. The guidance path is
a time-independent path constructed from the existing un-
committed paths. Figure 3 illustrates how the heuristic table
is computed. We modify LaCAM* to let each agent follow
a heuristic indicating the sum of the distance to the nearest
location on a guidance path and the distance from this lo-
cation to the goal along the guidance path. Following this,
LaCAM* generates paths that closely align with the previ-
ous uncommitted path and preserves prior search efforts as
much as possible. A similar approach is employed in (Chen
et al. 2024), where the authors compute traffic flows to eval-
uate congestion and utilise it to compute guidance heuristic.

Experiments
We implement our framework in C++2 on top of PIE (Zhang
et al. 2024). The experiments are conducted on a cloud in-
stance with 32GB RAM, 16 AMD EPYC-Rome CPUs. We
run experiments on four maps from different domains using
grid-based Multi-Agent Path Finding (MAPF) benchmarks
sourced from (Sturtevant 2012). These maps are named
random-32-32-10 (referred to as Random), warehouse-10-
20-10-2-1 (referred to as Warehouse), ht mansion n (re-
ferred to as Game), and Paris 1 256 (referred to as City).
For each map, we generate instances for different number
of agents from 100 to 500 with increments of 100 for Ran-

2Code and benchmark instances are available at
https://github.com/YueZhang-studyuse/LMAPF-delay



Success Rate (%)
Replan m

Approaches 200 400 600 800 1000 1200 1400
F 100 99.5 97 35.5 2.2 1.33 0.68
S 100 100 99.5 97.5 89.44 22.01 11.11
A 100 100 100 100 100 100 100

AN 100 100 100 100 100 100 100
Average Runtime (s)

m
Replan Approaches

F S A AN

200 0.016±0.004 0.013±0.004 0.213±0.029 0.015±0.001

400 0.086±0.246 0.028±0.009 0.040±0.004 0.032±0.002

600 0.362±0.566 0.095±0.291 0.068±0.017 0.053±0.002

800 2.272±1.071 0.215±0.545 0.094±0.019 0.083±0.006

1000 2.948±0.35 0.544±0.922 0.134±0.048 0.123±0.006

1200 2.977±0.23 2.503±0.978 0.180±0.067 0.186±0.015

1400 2.981±0.23 2.779±0.696 0.238±0.096 0.254±0.024

Average Solution Cost (×1000)

m
Replan Approaches

F S A AN

200 1.123±0.973 1.120±0.994 1.137±0.101 1.270±0.123

400 2.266±0.185 2.274±1.879 2.334±0.185 2.860±0.289

600 3.467±0.265 3.486±2.653 3.667±0.282 4.733±0.376

800 - 4.792±5.972 5.076±0.672 7.597±0.935

1000 - 6.288±0.985 6.698±1.036 11.96±0.644

1200 - - 9.038±2.595 20.09±2.311

1400 - - 11.70±3.082 28.65±4.287

Table 1: Success rate (%), average runtime (s) and average
solution cost of different replan approaches with p = 0.01
in Warehouse. The execution policy is MCP. m is the num-
ber of agents. For each number of agents in each map, we
average the planning time and solution cost of the replanner
(path improving not included) in each commit. Replanning
fails if it exceeds the 3s runtime timelimit. The solution cost
is the sum of the path length (number of actions in a path)
for each agent, and we only include the cost from the suc-
cess replan. ‘-’ means the success rate is less than 80%. The
subscripted value of the number indicates the standard devi-
ation. AN denotes Replan All using LaCAM* with distance-
to-goal heuristics, F, S, A are the same as Figure 4.

dom, 200 to 1400 with increments of 200 for Warehouse and
Game, and 1000 to 5000 with increments of 1000 for City.
The start and goal locations are randomly positioned.

For each timestep, we sample for each agent with a given
delay probability p (p ≥ 0) to be delayed, and if an agent
is delayed, the length of delay (l ∈ [dmin, dmax] and
dmin, dmax > 0) is uniformly sampled from a range. We
set l ∈ [1, 10] for all the experiments. For a fair compar-
ison, we sample once for each instance and use the same
delays when comparing different approaches. For each in-
stance, we run LMAPF evaluations for each algorithm once
for 600 timesteps of LMAPF simulation.
Experiment 1: Comparison of different strategies. We
first show the effectiveness of different strategies in our
framework. For strategies, we compare the proposed three
execution policies combined with different path replanners.
For the Simulate then Replan strategy, we only use MCP
since it is the only complete execution policy. We set com-

mit length k = 3 and test on Random and Warehouse with
small and large delays (p = 0.001, 0.01).

As shown in Figure 4, Replan All with Partial Solution as
Guidance achieves the best throughput and scalability with
different execution policies, while the other two methods
cannot scale with large agent team size. This is because Re-
plan All always succeeds, while the other two approaches
may frequently time out during execution when scaling up.

We use MCP execution policy and warehouse map with
delay probability p = 0.01 as an example to show the per-
formance of different replanners. Table 1 shows the average
runtime and success rate of the commits in different num-
bers of agents. We also present the results of LaCAM* with
distance-to-goal heuristics (denoted as AN ) to highlight our
approach with guidance heuristics. The results show that
compared to AN , Replan All with the previous path as guid-
ance helps maintain the previously optimised path as much
as possible, resulting in up to two times improvement on the
solution cost compared to AN . The other two appraoches
have lower solution cost and runtime when the team size is
small. However, when scaling up, they often time out, while
Replan All has a smaller amount of runtime and a high suc-
cess rate across all instances.

For execution policies, PIBT-D is found to achieve the
highest throughput in dense environments or when the delay
probability is large, while MCP performs slightly better in
larger maps and when less delay happens (Warehouse with
p = 0.001 delays). With larger delay probabilities, MCP
performance drops, as more agents are affected for following
the dependencies. This is because, in such situations, MCP
helps maintain the original path while not being affected by
unnecessary delays due to small delay probabilities.
Experiment 2: Performance against baselines. We com-
pare the throughput of our framework with PIBT-D, Replan
All against two baselines:
Baseline 1: we use PIBT with instant delay feedback. That
is, at every time step, we run PIBT to decide the next actions
for each agent with the current state. Then we execute the
next actions with delays and update the current state for each
agent based on the execution results so that PIBT is planning
directly with the delay result from the Executor.
Baseline 2: We use the original PIE planner with the sim-
ple delay handling method in (Hönig et al. 2019), in which
agents follow MCP execution to fully execute to a commit
cut, i.e., locations extracted from the Dependency graph. We
set the commit cut to be the last location for each agent on
the committed path.

For Baseline 2 and our approach, we vary the com-
mit length: either short commit (k = 3) or long com-
mit (k = 10). For delay probabilities, we set p =
0.001, 0.004, 0.007, 0.01.

As shown in Figure 5, for Baseline 1, the solution is of-
ten far from optimal even with instant delay feedback. Base-
line 2, which tries to synchronise agents to their commit cuts
with the given optimised path, is worse than Baseline 1. This
is because fully executing the commit cuts causes more de-
lays to be introduced while waiting for the delayed agent. It
is worth noting that in most cases smaller commits are bet-
ter, as we can get more frequent feedback and replan quicker
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Figure 5: Throughput of our framework against baselines.

except for Baseline 2, as agents with long delays will lead to
more waits in a small commit window, i.e., all other agents
wait at the last locations for one delayed agent.

The results show our framework significantly outperforms
the two baselines for different delay probabilities. We also
notice an odd throughput drop-down with 800 agents and an
increase after that in the Game map. This is because, at that
point, agents start to be congested, and the throughput gains
less benefit from increasing the number of agents, while the
delay effects in execution become larger. As the delay prob-
ability increases, the throughput keeps decreasing after scal-
ing to 800 agents. In addition to this, when scaling to 5000
agents in City map, Replan All starts to time out in most
commits, which decreases the performance of PIE-D to be
the same or even worse than Baseline 1. This is because
when timing out, PIE-D with Replan All has no chance to
improve the path.

Conclusion and Future Work
In this work, we consider desynchronisation between plan-
ning and execution, which often occurs in multi-agent sys-

tems and is caused by unexpected delays during execution.
We study this problem in LMAPF, our main contribution is
a new approach to planning and execution which has the ad-
vantages of both. We use reactive policies and simulated pre-
dictions to reduce the de-synchronisation gap, and we em-
ploy concurrent online replanning to restore feasibility and
to continually re-optimise the global objective. Our results
show that we significantly mitigate the impact of delays with
up to three times throughput improvements compared to ex-
isting delay-handling approaches in LMAPF.

Key takeaways include: (1) In online multi-agent settings
with delays, an incumbent plan is almost always out of sync
with execution. (2) Even under disruption, there is signif-
icant benefit from drawing upon the previous (now infea-
sible) incumbent. (3)Restoring feasibility via concurrent re-
planning is always better than conventional reactive policies.

Future work may explore more advanced heuristics or ma-
chine learning techniques to predict future delays and adapt
plans proactively to improve overall performance. Addition-
ally, instantiating the Planner to consider windowed plan-
ning approaches may be beneficial for further improvement.
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