
Optimized Solving Anonymous and Combinatorial Multi-Agent Path Finding
Problems in Polynomial Time

Stefan Edelkamp
Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics, Charles

University, Prague, Czech Republic
Computer Science Department, Artificial Intelligence Center Faculty of Electrical Engineering, Czech Technical University,

Prague, Czech Republic

Abstract

In this paper, we consider the planning missions for a fleet of
robots in undirected graphs, such as grids. In contrast to reg-
ular multi-agent path-finding (MAPF), the solver has to find
the assignment of goals to the agents on its own. With the
same number of goals and agents, this is Anonymous MAPF
(AMAPF), whereas the generalization for multiple goals is
known as Combinatorial MAPF (CMAPF). The polynomial-
time planner finds conflict-free optimized routes. First, short-
est path tables from all goals to all states are stored, and a
matrix of pairwise distances is computed. For AMAPF a fast
solver for the assignment problem is used to compute the ini-
tial mapping of start to goal locations, and, for the initial as-
signment of partial tours to agents in CMAPF a solver based
on Monte Carlo search is called. All solvable instances of the
MoveAI MAPF benchmark suite interpreted as AMAPF and
CMAPF problems have been solved. In these instances with
up to several thousands of robots, the automated assignment
strategies greatly reduce the number of potential conflicts,
with the remaining ones easily being resolved by elaborating
on the concepts of ants-on-the-stick and cuckoo’ing agents
that have already arrived at their destinations.

Introduction
Multi-agent path finding (MAPF) is the problem of comput-
ing collision-free paths for a set of agents from their cur-
rent locations to given destinations. Application examples
include automated warehouse systems, office robots, and
non-player moves in video games.

Regular MAPF (Stern et al. 2019a) with a fixed assign-
ment of k agent locations to k goals usually executed in
an undirected and unifomly weighted graph such as a grid
has impacted considerable research progress. Anonymous
multi-agent path finding (AMAPF) is MAPF where the goal
assignment is left to the solver (see Figure 1). For multiple
goals to be assigned to each agent, this is called combinato-
rial multi-agent path finding (CMAPF).

Multiple goals are a significant extension for current
MAPF solvers. For example, the authors in (Ren, Rathinam,
and Choset 2023) study an extension of the conflict-based
algorithm of MAPF to CMAPF, which later was shown to
be non-optimal (Mouratidis, Nebel, and Koenig 2024). The

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Simulation step in Anonymous MAPF benchmark
in (255 × 255) map with obstacles and 950 agent current
(red) and remaining goal positions (green, best seen magni-
fied with colors on screen).

core issue was the greedy manner of the chained A* algo-
rithm, clearing the hash table of nodes at different stages
of the search. Mixing individual A* search trees into one re-
tains optimality, but such a composite search is less efficient.

Although optimal polynomial-time algorithms for
AMAPF are known, the computational complexities are
high, so that the proposed network flow algorithm by Yu
and LaValle (2013) has not shown practical impact in

experiments. The core reason is that the algorithm operates
on the time-expanded graph, so that the input size for the
network is already large, which together with the superlinear
time complexity for network flow leads to considerable long
running times in practice.

In contrast to this line of work, in our approach we work
on the graph reduction that —up to computing, storing and
simulating shortest paths— is independent of the size of the
underlying graph. We derive efficient implementations for
the single-source all-targets shortest path problem (linear-
time in 4-and 8-connected grids) and for AMAPF to com-
pute an optimal solution of the assignment problem. The
Hungarian algorithm (Kuhn 1955) to solve the assignment
problem initially took O(k4), with n for AMAPF being
the number of agents in the graph, but later it was reduced
to O(k3). Among these O(k3) algorithms, we selected the
efficient shortest augmentation path algorithm (Jonker and
Volgenant 1987). Instead, to solve the CMAPF we use the
NRPA algorithm proposed by (Rosin 2011).

The paper is structured as follows. We briefly review re-
lated work on the problem and possible applications. Next,
we introduce the general solution principle that we ap-
ply, which also helps to warrant polynomial-time solubil-
ity. We consider the computational limits and possibilities
for anonmymous and combinatorial MAPFs, and introduce
polynomial-time solutions to these problems. Experimen-
tally, we study the reduction obtained in the sum of costs and
makespan, as well as the reduction and elimination of po-
tential conflicts on the set of 500 well-known MAPF bench-
marks instances from the Moving AI repository (Stern et al.
2019b). Finally, we reflect on the results obtained and indi-
cate future research avenues.

Related Work
The entire body of MAPF research is too large to be pre-
sented here, so we selected some recent trends and applica-
tions. A tractable algorithm for MAPF on undirected graphs
was proposed by (Wang and Botea 2014). More recently, the
MAPF algorithm on directed graphs was shown to be NP-
complete (Nebel 2023). Although the problem was known
to be NP-hard, Nebel proved that the problem is also con-
tained in NP, therefore, showing that short solution hypothe-
sis for strongly connected digraphs holds. Another interest-
ing recent MAPF variant is the option to disconnect trail-
ers or containers from vehicle agents (Bachor, Bergdoll, and
Nebel 2023).

From a logistics perspective with CMAPF we consider
extensions of the vehicle routing problem (VRP) known
from Operations Research (Dantzig and Ramser 1959) to
indoor navigation, where the objective is to find optimized
tours for a fleet of vehicles to service a given set of cus-
tomer requests while avoiding collisions. Usually in logis-
tics, the assigning of the goals to the vehicles has to be
found by the solver. Dynamic VRPs were studied by (Bullo
et al. 2011), and vehicle routing for robots with temporal
constraints by (Kiesel et al. 2012), using a high-level task
planner to statically assign waypoints to vehicles and a low-
level motion planner that generates a feasible path that re-
spects the vehicle motion model. While Edelkamp, Plaku,

Figure 2: Ants-on-a-stick problem (a known Math exercise).

and Warsame (2019a) tackle pickup and delivery VRPs over
a discrete abstraction using sampling-based motion planning
to guide the search in an obstacle-rich environment, which
produces paths that maximize the number of customers that
could be visited, Zacharia and Xidias (2020) developed an
approach that addresses the problem of vehicle route rout-
ing with uncertain customer demands and travel distances
applying fuzzy theory.

Liangou and Dentsoras (2021) presented an approach that
combines A* and a genetic algorithm to solve a variant of
the TSP with energy and capacity constraints, where A* is
used to calculate the shortest path for each combination of
pair of waypoints. An approach to MAPF with precedence-
constrained goal sequences was studied by (Zhang et al.
2022). Andreychuk et al. (2022) highlight that the simpli-
fying discretized time limits the applicability of multiagent
pathfinding algorithms in real-world applications and raise
questions of how to discretize time effectively, proposing al-
gorithms for finding optimal solutions that do not rely on any
time discretization. (Perez et al. 2014) introduced the multi-
objective physical TSP as a real-time game where the player
controls a ship that must visit a series of waypoints in a maze
while minimizing three opposing goals: time spent, fuel con-
sumed and damage taken, and the proposed controller was
based on single-objective Monte Carlo tree search, while
the evaluation stressed multi-objective concepts. There is re-
lated work on mission planning in terrains with varying en-
ergy consumption (Herynek and Edelkamp 2024), but this
work has a different focus, since the energy to be planned
must not be depleted.

Solution Principle: Ants-on-the-Stick
Our approach to solving the anonymous and combinatorial
MAPF is based on the following intriguing mathematical
puzzle (see Figure 2)1.

Several ants are dropped on a 1m stick. Each ant trav-
els to the left or right with a constant speed 1m / minute.
When two ants meet, they bounce off each other and reverse
direction. When an ant reaches an end of the stick, it falls
off. At some point all the ants will have fallen. The time at

1discussed, e.g., by Su, Francis E., et al. in blog ”Ants on a
Stick.” Math Fun Facts. See https://www.math.hmc.edu/funfacts

which this occurs will depend on the initial configuration of
the ants. While ants bouncing off each other seems difficult
to keep track of, we observe that two ants bouncing off each
other is equivalent to two ants that pass through each other,
instead of turning and exchanging their intended direction.
In this way, all the ants fall after traversing the length of the
stick and it will be empty after 1 minute.

Polynomial-Time Solutions
In an undirected graph with n goals and a set of k mov-
ing agents, we consider a multi-goal multi-agent path-
finding problem. For a fixed assignment from k robots to
k goals, we have the (nonoptimal) classical MAPF problem
that has been solved in polynomial time for an undirected
graph (Röger and Helmert 2012; Kornhauser, Miller, and
Spirakis 1984). The work goes back to (Wilson 1974), who
proved this for k = n− 1.

Anonymous MAPF
For the AMAPF problem with k agents and k goals, there
are even optimal polynomial algorithms. The main idea is
to replicate the graph of the underlying problem with the
depth of the solution and look for an optimal flow of the
network (Yu and LaValle 2013). However, the approach is
hardly practical and, to the best of our knowledge, has not
been implemented. It also does not easily carry over to mul-
tiple goals as even for one agent we have a TSP. We start our
study with the following definition.

Definition 1 (Anonymous MAPF alias AMAPF) Let
G = (V,E,w) be a weighted graph with w : E → N.
We assume that the graph is undirected, so that for all
(u, v) ∈ E we have (v, u) ∈ E and w(u, v) = w(v, u).
In the Asynchronous MAPF problem, AMAPF for short,
for a set of agents R with k = |R| and pairs start and
goal locations (si, tj) ∈ V × V for i, j ∈ {1, . . . , r},
collision-free routes πi, i ∈ {1, . . . , k}, have to be found
that for each robot starts in si, ends in some goal location
and that together minimize accumulated travel weight∑k

i=0

∑
(u,v)∈πi

w(u, v) (sum-of-cost) or maximum travel
time maxki=0

∑
(u,v)∈πi

w(u, v) (makespan).

A collision occurs during the simulation of the routes, if
two robots are located at a node at the same time (node con-
flict), or on traversing an edge at the same time, so that addi-
tional to robot moving actions, wait actions might be needed.
Grid graphs can be easily be compiled into a graph, with
each cell representing a node.

As a first step, we compute a shortest-path reduction of the
graph. Applying Dijkstra’s algorithm for each agent comput-
ing shortest paths backwards from every goal, for n = |V |
and e = |E| this takes time O(e + n log n) (with Fibonacci
heaps). For simulation and path tracking, we still keep the
shortest paths to the goals. In essence, for k robots, this pre-
computation step takes at most O(k(e + n log n)) = (kn2)
time and space O(kn).

Faster structures like bucket structures and radix-heaps re-
duce the running time further to almost linear time (for non-
negative integer costs bounded by C, a one-level form of

1 void sssp(int w, x, int y) {

2 q.push(x * SIZEY + y);

3 for (int i=0;i<SIZEX;i++) {

4 for (int j=0;j<SIZEY;j++) {

5 closed[i][j] = false; shortest[w][i][j] = -1;}}

6 while (!q.empty()) {

7 int n = q.front(); q.pop();

8 int x = n / SIZEY, y = n % SIZEY, succs = 0;

9 if (closed[x][y]) continue;

10 if (x > 0 && !map[x-1][y]) succ[succs++] = (x-1) * Y + y;

11 if (x < X-1 && !map[x+1][y]) succ[succs++] = (x+1) * Y + y;

12 if (y > 0 && !map[x][y-1]) succ[succs++] = x * Y + (y-1);

13 if (y < Y-1 && !map[x][y+1]) succ[succs++] = x * Y + (y+1);

14 if (x > 0 && y < (SIZEY-1) && !map[x-1][y+1])

15 succ[succs++] = (x-1) * SIZEY + (y+1);

16 if ((x < SIZEX-1) && (y < SIZEY-1) && !map[x+1][y+1])

17 succ[succs++] = (x+1) * SIZEY + (y+1);

18 if ((x < SIZEX-1) && y > 0 && !map[x+1][y-1])

19 succ[succs++] = (x+1) * SIZEY + (y-1);

20 if (x > 0 && y > 0 && !map[x-1][y-1])

21 succ[succs++] = (x-1) * SIZEY + (y-1);

22 if (!closed[x][y]) { shortest[x][y] = n; q.push(succ[s]))
;}}}}

Figure 3: Single-source all-targets shortest-paths implemen-
tation for undirected octile grids via (backward) BFS.

the radix heap yields a time limit for Dijkstra’s algorithm of
O(e + n logC), and a two-level form of radix heap gives
a limit of O(e + n logC/ log logC), so that assuming 64-
bit integers to encode the cost values, radix-heaps lead to
an additional constant to the linear time complexity. Note
that for undirected graphs and integer weights, Mikkel Tho-
rup (1997) showed that a linear-time shortest path algorithm
running in O(e) exists but becomes more complicated to im-
plement. For planar graphs, like grids, by Euler’s formula,
we directly obtain e = O(n).

For uniformly weighted grid graphs, breadth-first search
(BFS) suffices, so in grid graphs we end up with time
O(kn) for this step. This implementation is provided in
Fig. 3. Using BFS instead of Dijkstra’s shortest-path search
in weighted undirected graphs would also yield solubility
but worse solutions.

As a second step, we compute the matrix of pairwise dis-
tances between all start-to-goal locations, which —by chain-
ing back associated shortest-path pointers— is available in
time O(n × k2) using the precomputed information on the
shortest paths from Step 1. As the graph is undirected, only
half of the distance matrix needs to be determined and the
other half can be copied. If distances are precomputed with
each node in the closed list, the running time for this step
reduces to O(k2).

As a third step, we compute the mapping of an equal num-
ber of agents’ starting locations and goals, weighted with
shortest path distances. The assignment problem asks for
such a mapping so that the total travel time is minimized.
The first implementation with the Hungarian algorithm for
solving the problem given the almost 1000 agents in the ex-
ample of Fig. 1 was less than half a minute, but took about
15 minutes for examples with about 7000 agents. Therefore,
we chose the faster Jonker/Vologenant algorithm to solve
the AP instead. It has a cubic time in the number of agents

O(k3) and in practice leads to adequate running times (see
experiments). While there are faster parallel implementa-
tions for solving the assignment problem on multi-core CPU
and many-core GPUs we chose our implementation to run
on a single-core. As stated in the Introduction, this step re-
quires time O(k3).

Last but not least, in Step 4 we simulate the solution in
the graph to handle the collision conflicts. We look at the
precomputed shortest-path distance table to find the next lo-
cation to go to for the agent. For each agent, we denote its
position and orientation (that is, the direction of the next goal
to visit). In this way, we can compute the agent-dependency
graph.

We are using the above ant-on-the-stick metaphor to
exchange the goals (and subsequent shortest-path tables)
among the agents. The simulation time is the number of
simulation steps multiplied by the efforts in each step. The
number of simulation steps will (in a first approximation) be
bounded by the length of the longest path and, therefore, the
diameter of the graph, so that the simulation takes at most
time quadratic to the size of the graph.

There are, however, two subtleties to this approach as
the ant-on-the-stick problem is considered a continuous line,
while for MAPF we have nodes and edges of the underlying
graph and agents do not drop off.

While edge conflicts of agents can be handled immedi-
ately by swapping the goal information of the agents, for
node conflicts of approaching agents, such conflict may
incur a delay of one agent. This delay is propagated re-
cursively among other agents along the agent-dependency
graph, namely to all agents that have the location of the wait-
ing agent as targets. For this an inverted action dependency
tree has to be traversed. When assuming a maximum branch-
ing factor, this backward traversal is constant-time for each
node in the tree, after which it is removed from further con-
sideration. As all node conflicts are removed and the action
dependency graphs are trees resolved in the same iteration,
this will not increase the running time by at most a factor
O(k) per iteration. The total number of iterations for the
simulation at remains bounded, as the node conflict in one
iteration will be an edge conflict in the other. If we have a
node conflict of more agents, e.g. by paths intersecting, we
can do a one-step lookahead to resolve it. In case of 4- or
8-connected grids, there is a limited number of agents in-
volved in a node conflict, so that we can break ties in al-
ternating fashion. Although the maximum time complexity
increases to O(kn · diam) = O(kn2), after solving the as-
signment problem, conflicts are rather rare in practice, and
the simulation is usually much faster than all the other steps.

Secondly, there is the additional problem that agents
might have arrived at a destination and stopped their journey
there. This might lead to the blocking of other agents. We re-
solve this problem with a concept that we call cuckoo’ing:
the agents at the goal location are pushed out of their lo-
cation with the agents arriving at it. This is assisted by
exchanging the goal and shortest-path information among
them. This step also has to be executed recursively on the
shortest path of an agent to move until one agent leaves the
sequence of goals or all agents arrive at their desired spot.

If there is an agent pointing to the location at the end of
the cuckooing process, it has to wait and so do the agents
pointing to it, so that these goal conflicts are handled before
the agent conflicts. As a positive side effect, cuckooing may
reduce the makespan and thus the number of iterations for
the simulation. Cuckoo’ing is a local update that in total for
each iteration does not add more than O(k) to the runtime
and O(kn · diam) = O(kn2) for Step 4.

Given k ≤ n as a result, we arrive at time O(kn2+kn2+
k3 + kn2) = O(k · n2) for the entire algorithm, supporting
the following result on polynomial solubility.

Theorem 1 (Polynomial-Time Solubility of AMAPF)
Let k be the number of agents and n be the number of nodes
in the graph. The AMAPF problem is solvable in polynomial
time wrt. n and k. Optimization of solutions is available in
time O(k · n2). The space requirements are dominated by
the tables that store the shortest path information, which is
of size O(k · n).

As we first solve the assignment problem and then the
resulting MAPF, we cannot expect optimal solutions with
our polynomial-time algorithm, as the well-known (n2−1)-
puzzle can be cast as a multi-agent path-finding problem,
which is polynomially solvable but computing the optimal
solution is NP-hard.

Combinatorial MAPF
For CMAPF we start with some observations. The traveling
salesman problem (TSP) is NP-complete even for uniformly
weighted and undirected graphs, and thus, as generaliza-
tions, most multi-agent multi-goal path-finding problems are
at least NP-hard (Applegate et al. 2006). If we do not insist
on exclusive visits to the nodes, this complexity may de-
crease. For example, the Eulerian path problem, where each
edge has to be visited exactly once, is polynomially solv-
able. Recall also that existing algorithms for the TSP are
exponential in the number of goals to visit, not necessarily
in the size of the input graph, as the above polynomial-time
shortest-path reduction for the graph can be applied.

Definition 2 (Combinarorial MAPF alias CMAPF)
Let G = (V,E,w) be a weighted graph with edge func-
tions with cost function w : E → N for travel distance.
We assume that the graph is undirected, so that for all
(u, v) ∈ E we have (v, u) ∈ E and w(u, v) = w(v, u).
In the combinatorial MAPF problem, for a set of agents R
with k = |R| and starting locations S ⊆ V and a set of
goals W ⊆ V with m = |W | routes πi have to be found for
each of the robots i ∈ {1, . . . , k}, that in total visit all the
goals and minimizes a combination of accumulated travel
time

∑k
i=0

∑
(u,v)∈πi

w(u, v) (sum-of-cost) and maximum
travel time maxki=0

∑
(u,v)∈πi

w(u, v) (makespan).

The algorithm we proposed is similar to that for AMAPF.
In the experiments, for the sake of simplicity, we neglect
the starting positions for the shortest path computations and
assume that the agents start at some goal positions, which
will be visited in the initial state. In terms of the algorithm’s
input, this approach is equivalent to extending the goal set of

size m by the agents’ starting positions r to a new goal set
with size (m+ r).

If the graph is disconnected, we first compute the con-
nected components in linear time to the size of the graph
and solve the problem in each connected component indi-
vidually. So, w.l.o.g., we assume that the undirected graph is
connected. In the benchmarks, this might not be the case, so
some problems are quickly determined to be unsolvable.

It is also obvious that any given assignment of (still un-
visited) goals to agents induces a partitioning W1 . . . ,Wk

of the set of remaining goals W with ∪i=1Wi = W and
Wi ∩Wj = ∅ for all 1 ≤ i ̸= j ≤ k.

We start with a(ny) greedy initial ordered assignments of
the goals to the agents, which may be found by graph parti-
tioning or weighted clustering approximation methods, large
neighborhood searches, or, as in our approach, by a Monte
Carlo search-based time-limited approximate vehicle rout-
ing solver.

Suppose that during the travel imposed by the shortest
paths between subsequent goals, agent ri has a goal gj on
top of its goal agenda and another agent ri′ has goal gj′ with
i ̸= i′ and j ̸= j′ on top of its agenda. In case of a collision
of the two, we again apply the argument from the ant-on-
stick example. The two agents exchange their agendas, so
that ri′ next turns to the goal gj with ri next turns to goal
gj′ . This is done for each of the agents at each collision, so
that all goals are reached in polynomial time.

The actual implementation on graphs with nodes and
edges aligns with the solution stages for AMAPF and looks
as follows (we use m for the number of goals, n for the
number of nodes in the graph, and k ≤ m for the number of
robots).

As a first step, once more we compute the shortest-path
reduction of the graph, starting from the goals’ locations.
With Dijkstra’s algorithm for each goal in computing short-
est paths, this step takes time O(mn) in grid graphs. If we in-
clude the robots starting positions, this complexity increases
to ((m+k)n) for grid graphs, and at most to O((m+k)n2)
for general graphs.

As a second step, we again compute the matrix of pair-
wise distances between all destination locations, which is
available in time O((m + k)2) using the precomputed in-
formation on the shortest paths, or O(diam · (m + k)2) =
O(n · (m+ k)2) when using only the link information.

Next, we use a greedy vehicle routing solver for pairwise
distances to find initial routes for each of the agents. Note
that any assignment of goals to the agents will work, so this
step can be obtained in linear time to the number of goals.
However, for a minimized overall travel, we need an op-
timized assignment. Thus, we apply a time-limited Monte
Carlo search, called a Nested Rollout with Policy Adaption
(NRPA, see below).

With a level l search and iteration width i this step re-
quires O(il) rollouts and a (much) small number of policy
adaptations. Each rollout runs in time O((m + k)2), with
m in (m + k) to traverse all potential successors and r in
(m + k) to detect the starting positions in each of the steps
m+k. The adaptation procedure runs in O((m+k)2). Both
procedures are independent of the initial size of the graph

n. Although this step adds substantial running time for the
computational complexity, we may consider the number of
rollouts to be a constant controlled by the user.

When agents are assigned to tours, the actual simulation
starts, which also resolved conflicts on-the-fly. The beauty
of our approach is that it dynamically changes the goals for
the agents. If a goal is reached, the corresponding agent con-
tinues with the next one, so that at each point in time, each
agent has its goal agenda and the next goal to visit for which
it can retrieve the shortest path for to navigate trough the
graph.

Again, we cover the subtlety of agents having already ar-
rived at their goal location, which we resolve via cuckoo’ing.
Agent-agent interactions are even rarer, and are resolved
with the same strategy of waiting on node conflicts, and ex-
changing agendas on edge conflicts.

Following the AMPF time complexity derivations, the
simulation finishes in O((m+ k)n2) time.

In summary, we obtain the following result, which adapts
the goal agendas of the individual robots on-the-fly. With
the NRPA algorithm, the constructed solution will have a
quality optimized solution according to the stated optimiza-
tion criterion. By the usually smaller number of agents than
the number of goals to visit, the obtained CMAPF solutions
have a much higher number of steps than for the correspond-
ing AMAPF.

Theorem 2 (Polynomial-Time Solubility of CMAPF)
Let m be the number of goals, n be the number of nodes on
the graph, and k ≤ m the number of agents. The CMAPF
problem can be solved in polynomial time in n, k, and
m. For computing an initial tour assignment and at most
O((k + m) · n2) computation for the rest to generate
optimized solutions. The space requirements are dominated
by the tables that store the shortest path information, which
is of size O((k +m) · n).

The proposed algorithm includes a user-parameterized
NRPA solver with time O((m+ k)2 · z), where z is the num-
ber of rollouts.

As optimal CMAPF generalizes a TSP, we cannot expect
optimal solutions to be found in polynomial time.

We implemented the CMAP solver for grid graphs. While
we utilize a queue for BFS which runs in linear time, it is
not difficult to extend the algorithm with a priority queue
to Dijkstra’s algorithm. Note that we do not stop the back-
ward exploration at any node and instead solve the single-
source all-targets shortest-path problem. The result of the
exploration is stored together with a goal and queried for the
agents’ current location.

As the CMAPF problem optimally is computationally
hard, for a solvable instance, we will find an approximate so-
lution without collision. For the initial assignments of goals
to the agents we use the NRPA algorithm, which is an any-
time solution and can be controlled by its parameters: the
number of iterations (the width of the recursion) and the
level of the search (the depth of the recursion tree). The
implementation of the recursive search procedure for the
shortest-path reduced CMAPF setting is given in Figure 4.

1 Pair search(int level) {

2 Pair best; best.score = MAXVALUE;

3 if (level == 0) {

4 best.score = rollout();

5 for (int j = 0; j < GOALS+AGENTS; j++)

6 best.tour[j] = tour[j]; }

7 else {

8 for(int i = 0; i < GOALS; i++)

9 for(int j = 0; j < GOALS; j++)

10 backup[level][i][j] = global[i][j];

11 for(int i=0; i<ITERATIONS; i++) {

12 Pair r = search(level - 1);

13 if (r.score < best.score) {

14 best.score = r.score;

15 for (int j = 0; j < GOALS+AGENTS; j++)

16 best.tour[j] = r.tour[j]; }

17 adapt(best.tour,level);}}

18 for(int i = 0; i < GOALS; i++)

19 for(int j = 0; j < GOALS; j++)

20 global[i][j] = backup[level][i][j]; }

21 return best; }

Figure 4: Main search procedure for computing initial
CMAPF agendas in NRPA.

1 void adapt(int* tour, int level) {

2 for (int j=0;j<GOALS;j++) visits[j] = false;

3 visits[0] = 1;

4 int successors, node = 0;

5 for(int j=0; j<GOALS; j++) {

6 succs = 0;

7 for(int i = 0; i < GOALS; i++)

8 if (check(i)) moves[succs++] = i;

9 double factor = 1.0;

10 if (node == 0) factor /= AGENTS;

11 double z = 0.0;

12 for(int i=0; i<succs; i++)

13 z += exp(global[node][moves[i]]);

14 for (int i=0; i<succs; i++)

15 backup[level][node][moves[i]] -= factor *

16 exp(global[node][moves[i]])/z;

17 node = tour[j]; visits[node] = true; }}

Figure 5: Policy adaptation in NRPA.

The implementation of the randomized simulation proce-
dure or rollout that is executed on each leaf of the motion
tree is given in Figure 6. It computes the sum-of-costs of the
individual routes taken and returns it as an evaluation. The
procedure that adapts the policy and steers the random sim-
ulation is shown in Figure 5. The core implementation trick
is to generate one tour for all of the agents in common and
split it at the next obtained starting locations. When gener-
ating the combined tour, the distance from the last location
of the current agent to the next agent is set to zero, and the
makespan is reset to zero.

Experiments

We compiled our program under the Linux (Ubuntu 13.2.0-
23ubuntu4) subsystem of a Windows 11 Pro (laptop) com-
puter using gcc version 13.2.0 and ran the above algorithms
on 1 core of AMD Ryzen 7 PRO 7940U.

1 double rollout() {

2 for (int j=0;j<GOALS;j++)

3 visits[j] = 1;

4 visits[0] = true;

5 tour[0] = 0; tourSize = 1;

6 int node = 0, prev = 0;

7 double makespan = 0, cost = 0;

8 while(tourSize < GOALS) {

9 double sum = 0;

10 int successors = 0;

11 for(int i = 0; i < GOALS; i++) {

12 if (check(i)) {

13 moves[successors++] = i;

14 for (int j = 0;j < GOALS;j++) {

15 if (i != j) {

16 if (check(j)) {

17 successors--; break; }}}}}

18 if (successors == 0) {

19 for(int i = 0; i < GOALS; i++)

20 if(check(i))

21 moves[successors++] = i; }

22 for(int i=0; i<successors; i++) {

23 value[i] = exp(global[node][moves[i]]);

24 sum += value[i]; }

25 double mrand = ((double) rand()/RAND_MAX)*sum;

26 int i=0; sum = value[0];

27 while(sum<mrand) sum += value[++i];

28 prev = node; node = moves[i];

29 tour[tourSize++] = node;

30 visits[node]--;

31 cost += d[prev][node];

32 makespan = makespan + d[prev][node];

33 for (int r = 0; r < AGENTS; r++) {

34 if (start[r] == node) {

35 cost -= d[prev][node];

36 ms = std::max(makespan,ms);

37 makespan = 0.0;

38 break; }}}

39 ms = smax(makespan,ms);

40 return ms + cost/ROBOTS;

41 }

Figure 6: Policy adaptation procedure in NRPA.

Anonymous MAPF
For the first experiment, we selected the Boston map with
950 agents (see Figure 1) from the MAPF benchmark suite
in Nathan Sturtevant’s Moving AI Lab. With Classical
MAPF we denote the fixed assignment given in the bench-
mark. With Anonymous MAPF we denote the MAPF after
reassignments of the mapping of agents to the goals. For
the time being, we assume that the agents apply the ant-
algorithm and exchange their goals on a potential conflict.
The results are shown in Table 1.

Problem Sum-of-Cost Makspan Pot. Conflicts
Classical MAPF 227473 593 26420

Anonymous MAPF 19267 267 552

Table 1: Reduction of key performance indicators in a reas-
signment of goals by solving the assignment problem in the
running example of the Boston map from Figure 1.

We see that there the makespan reduces to less than 1/2
(45%), and the sum-of-cost reduces to less than 1/10 (8.4%).

But the most impressive impact is that the reassignment re-
duces the number of potential collisions in the solution sim-
ulation, where the robot exchanges their respective goals to
less than 1/20 (1.97%). Note that a number of conflicts that
is half of the number of robots means that on average there is
less than one potential collision per agent that were resolved
in the simulation with cuckoo’ing and propagated delay.

Across the 500 benchmark instances for the selected 20
domain in Fig-7 we first display the number of agents (used
in AMAPF) alias the number of goals (used in CMAPF).

Figure 7: Total number of agents for computing and simu-
lating AMAP in the 500 benchmark instances across 20 dif-
ferent domains.

Next, Figure 8 shows the reduction in sum-of-cost and
Figure 9 the reduction in the makespan for AMAPF wrt.
MAPF.

Figure 10 displays the potential conflicts observed during
simulation. The gain in makespan is about 50%, while for
the sum of cost we estimate a reduction of one order, and for
the number of potential conflicts two orders of magnitudes.

Figure 8: Comparing total travel distances of MAPF and
AMAPF in the 500 benchmark instances on logarithmic
scale.

The running time including the simulation was mostly be-
low 1 second (see Figure 11) and around 15 seconds for the
largest maps with several thousands of robots. If we assume
that robots take more time for each simulation step, the in-
vestment of additional efforts to calculate a better goal as-
signment for the agents pays off.

Figure 9: Comparing maximum travel distance of MAPF
and AMAPF in the 500 benchmark instances.

Figure 10: Comparing potential collisions of MAPF and
AMAPF in the 500 benchmark instances on logarithmic
scale. During simulation all conflicts are resolved on-the-fly.

Figure 12 shows the profile of the main steps in the algo-
rithms over the set of reference instances. We see that the
time for computing the pairwise shortest path matrix dom-
inates the running time. In this case, we recomputed the
length for each individual matrix entry. As described above
and performed for the CMAPF experiment, it can be halved
by storing the closed list for each agent with distances al-
most completely reduced. The main issue to recompute the
distances on-the-fly was that keeping the closed list of the
size of the grid, storing with the distances for each agent, on
top of the shortest-path link information exceeded the mem-
ory of 32GB on our compute in the largest instances. As we
were satisfied with the overall results of the experiments and
the validation of conflict removal, we did not rerun it.

Combinatorial MAPF
It is possible to extend the above solution to the Combina-
torial MAPF. The shortest path exploration and subsequent
distance matrix between the goals and agents can be reused,
so that individual tours for the agents are determined.

However, in this case, solutions to assignment problems
are no longer sufficient, as they would lead to subtours that
have to be eliminated. In fact, instead, we are solving the ve-
hicle routing problem, which generalizes the salesman prob-

Figure 11: Total CPU Time for computing and simulating
AMAP for the 500 benchmark instances [in s].

Figure 12: Running time profile of MAPF and AMAPF in
the 500 benchmark instances.

lem. Instead, we call NRPA with a fixed parameter setting to
find an optimized solution to the tour assignment problem.
In addition to the use for shortest-path navigation, the matrix
for pairwise shortest paths of the goals was also used to bias
the exploration of NRPA by presetting policy values.

We used a fixed number of k robots and decided to let
them start at the first k target locations. Unfortunately, some
of the goals in the domains are unreachable, so some of the
problem instances become unsolvable. Using an NRPA with
a limited number of rollouts, we solved each of the remain-
ing benchmark instances in less than half an hour. The total
running times are plotted in Figure 13.

There are different trade-offs between running time and
solution quality. We chose a parameterization for NRPA to
conduct the entire series of experiment in one day. We vali-
dated that given more time to carry out rollouts, the solutions
improve. We also checked that, as expected, the quality of
the solution is improving for a growing number of robots.

Conclusion
Anonymous MAPF and the Combinatorial MAPF are fas-
cinating problems with several applications especially in
indoor logistics. As we compute the assignments of goals
to agents automatically, our approach also solves classical
MAPFs and the regular MAPFs with multiple goals.

The approach is optimizing and not optimal, but the so-

Figure 13: Total running time profile of CMAPF for the 500
benchmark instances [in s] (vertical axis on logscale!). Un-
solvable instances are quickly found by the solver and man-
ifest as spikes in plot.

Figure 14: Number of agent steps needed to solve the
problem (with unsolvable instances omitted from plot) in
CMAPF for the 500 benchmark instances (vertical axis on
logscale)

lutions based on an optimal shortest-path assignment for
AMAPF are convincing, and for MAPF, the promising solu-
tions can be further improved by investing more time in the
NRPA optimization stage. This, in turn, can lead to an any-
time algorithm behavior for CMAPF, while supposing that
all precomputations have finished in start-up time, which
even for a moderate number of robots and grid size is a mat-
ter of a few seconds.

As observed by (Mouratidis, Nebel, and Koenig 2024)
even for the classical MAPF with multiple goals, proposed
solutions like CBSS fail to compute optimal solutions for
multi-goal MAPFs, as the underlying shortest-path search
algorithm is not suited to chaining of the goals. There is a
proposed fix, but the computational overhead for the com-
bined search increases significantly.

This paper provides a polynomial-time collision-free so-
lution for Anonymous and Combinatorial MAPF based on
the ants-on-the-stick argument. While computing an optimal
anonymous MAPF is polynomial, the computational com-
plexity of the optimal combinatorial MAPF remains NP-
hard.

We showed that a re-assignment of goals in the bench-

mark leads to a significant reduction in the makespan, and a
reduction in the sum-of-cost in the order of about one magni-
tude. The number of potential conflicts shrinks by two orders
of magnitude and can be resolved on-the-fly. The computa-
tional costs for the entire algorithm are moderate, and with
the delegation of efforts to the initialization stage, allowing a
fast and convincing solutions even for benchmark problems
with thousands of agents on one core of a customary (laptop)
computer.

In the future, we will include more realistic modeling
aspects, such as robot rotation, as required for the 2024
League of Running Robots competition. With NRPA that
generates solutions in a depth-first manner, our solution ex-
tends to other types of logistics settings, including pickup
and delivery, as well as limited time and load (Edelkamp,
Plaku, and Warsame 2019b). This work also shows that
the above solutions can serve as a discrete abstraction for
multi-robot multi-goal motion planning, where solutions are
used as guidance for robot motions as implemented in the
DROMOS framework (Plaku 2012; Edelkamp, Jabbar, and
Lluch-Lafuente 2005; Plaku, Çela, and Plaku 2023). It is
possible to extend the solution to distributed MAPF (Der-
gachev and Yakovlev 2024).

Acknowledgements
Thanks to Jáchym Herynek, Roman Barták, and Jiřı́
Švancara for the discussion about this project. The presented
work has been supported by the Czech Science Foundation
(GAČR) under the research project number 22-30043S.

References
Andreychuk, A.; Yakovlev, K. S.; Surynek, P.; Atzmon, D.;
and Stern, R. 2022. Multi-agent pathfinding with continuous
time. Artif. Intell., 305: 103662.
Applegate, D. L.; Bixby, R. E.; Chvatál, V.; and Cook, W. J.
2006. The Traveling Salesman Problem: A Computational
Study. Princeton University Press. ISBN 9780691129938.
Bachor, P.; Bergdoll, R.; and Nebel, B. 2023. The Multi-
Agent Transportation Problem. In Williams, B.; Chen, Y.;
and Neville, J., eds., AAAI, 11525–11532. AAAI Press.
Bullo, F.; Frazzoli, E.; Pavone, M.; Savla, K.; and Smith,
S. L. 2011. Dynamic Vehicle Routing for Robotic Systems.
Proceedings of the IEEE, 99(9): 1482–1504.
Dantzig, G. B.; and Ramser, J. H. 1959. The truck dispatch-
ing problem. Management science, 6(1): 80–91.
Dergachev, S.; and Yakovlev, K. S. 2024. Decentralized
Unlabeled Multi-Agent Pathfinding Via Target And Prior-
ity Swapping. In Endriss, U.; Melo, F. S.; Bach, K.; Diz, A.
J. B.; Alonso-Moral, J. M.; Barro, S.; and Heintz, F., eds.,
ECAI 2024 - 27th European Conference on Artificial Intelli-
gence, 19-24 October 2024, Santiago de Compostela, Spain
- Including 13th Conference on Prestigious Applications of
Intelligent Systems (PAIS 2024), volume 392 of Frontiers
in Artificial Intelligence and Applications, 4344–4351. IOS
Press.
Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A. 2005.
Cost-Algebraic Heuristic Search. In Veloso, M. M.; and

Kambhampati, S., eds., AAAI, 1362–1367. AAAI Press / The
MIT Press.
Edelkamp, S.; Plaku, E.; and Warsame, Y. 2019a. Monte-
carlo search for prize-collecting robot motion planning with
time windows, capacities, pickups, and deliveries. In KI,
154–167. Springer.
Edelkamp, S.; Plaku, E.; and Warsame, Y. 2019b. Monte-
Carlo Search for Prize-Collecting Robot Motion Planning
with Time Windows, Capacities, Pickups, and Deliveries. In
KI 2019: Advances in Artificial Intelligence, volume 11793
of Lecture Notes in Computer Science, 154–167. Springer.
Herynek, J.; and Edelkamp, S. 2024. Multi-Robot Multi-
Goal Mission Planning in Terrains of Varying Energy Con-
sumption. In 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.
Jonker, R.; and Volgenant, A. 1987. A shortest augmenting
path algorithm for dense and sparse linear assignment prob-
lems. Computing, 38(4): 325–340.
Kiesel, S.; Burns, E.; Wilt, C.; and Ruml, W. 2012. Inte-
grating vehicle routing and motion planning. In Twenty-
Second International Conference on Automated Planning
and Scheduling.
Kornhauser, D.; Miller, G. L.; and Spirakis, P. G. 1984. Co-
ordinating Pebble Motion on Graphs, the Diameter of Per-
mutation Groups, and Applications. In 25th Annual Sympo-
sium on Foundations of Computer Science, 241–250. IEEE
Computer Society.
Kuhn, H. W. 1955. The Hungarian Method for the Assign-
ment Problem. Naval Research Logistics Quarterly, 2(1–2):
83–97.
Liangou, T.; and Dentsoras, A. 2021. Optimization of mo-
tion and energy consumption of an industrial automated
ground vehicle. In 2021 12th International Conference on
Information, Intelligence, Systems & Applications (IISA), 1–
7. IEEE.
Mouratidis, G.; Nebel, B.; and Koenig, S. 2024. Fools Rush
in Where Angels Fear to Tread in Multi-Goal CBS. In Fel-
ner, A.; and Li, J., eds., Seventeenth International Sympo-
sium on Combinatorial Search, SOCS 2024, Kananaskis, Al-
berta, Canada, June 6-8, 2024, 243–251. AAAI Press.
Nebel, B. 2023. The Small Solution Hypothesis for MAPF
on Strongly Connected Directed Graphs Is True. In Koenig,
S.; Stern, R.; and Vallati, M., eds., ICAPS, 304–313. AAAI
Press.
Perez, D.; Powley, E.; Whitehouse, D.; Samothrakis, S.; Lu-
cas, S.; and Cowling, P. I. 2014. The 2013 Multi-objective
Physical Travelling Salesman Problem Competition. In
2014 IEEE Congress on Evolutionary Computation (CEC),
2314–2321.
Plaku, E. 2012. Motion Planning With Differential Con-
straints as Guided Search Over Continuous and Discrete
Spaces. In Symposium of Combinatorial Search (SOCS),
171–172. AAAI Press.
Plaku, E.; Çela, A.; and Plaku, E. 2023. Robot Path Planning
with Safety Zones. In Gini, G.; Nijmeijer, H.; and Filev,

D. P., eds., Proceedings of the 20th International Confer-
ence on Informatics in Control, Automation and Robotics,
ICINCO 2023, Volume 1, 405–412. SCITEPRESS.
Ren, Z.; Rathinam, S.; and Choset, H. 2023. CBSS: A new
approach for multiagent combinatorial path finding. IEEE
Transactions on Robotics.
Röger, G.; and Helmert, M. 2012. Non-Optimal Multi-
Agent Pathfinding Is Solved (Since 1984). In Multiagent
Pathfinding, Papers from the 2012 AAAI Workshop, volume
WS-12-10 of AAAI Technical Report. AAAI Press.
Rosin, C. D. 2011. Nested Rollout Policy Adaptation for
Monte Carlo Tree Search. In IJCAI, 649–654. IJCAI/AAAI.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019a. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the Twelfth International Symposium on Combinatorial
Search, (SOCS), 151–158. AAAI Press.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019b. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. Symposium on
Combinatorial Search (SoCS), 151–158.
Thorup, M. 1997. Undirected Single Source Shortest Path in
Linear Time. In 38th Annual Symposium on Foundations of
Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, 12–21. IEEE Computer Society.
Wang, K. C.; and Botea, A. 2014. MAPP: a Scalable Multi-
Agent Path Planning Algorithm with Tractability and Com-
pleteness Guarantees. CoRR, abs/1401.3905.
Wilson, R. M. 1974. Graph puzzles, homotopy, and the al-
ternating group. J. Combinatorial Theory Ser., B16: 86–96.
Yu, J.; and LaValle, S. M. 2013. Multi-agent Path Planning
and Network Flow. In Frazzoli, E.; Lozano-Perez, T.; Roy,
N.; and Rus, D., eds., Algorithmic Foundations of Robotics
X, 157–173. Berlin, Heidelberg: Springer Berlin Heidelberg.
Zacharia, P. T.; and Xidias, E. K. 2020. AGV routing and
motion planning in a flexible manufacturing system using a
fuzzy-based genetic algorithm. The International Journal of
Advanced Manufacturing Technology, 109(7): 1801–1813.
Zhang, H.; Chen, J.; Li, J.; Williams, B. C.; and Koenig, S.
2022. Multi-agent path finding for precedence-constrained
goal sequences. In International Conference on Autonomous
Agents and Multiagent Systems, 1464–1472.

