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Abstract

We propose a multi-robot control paradigm to efficiently plan
collision-free paths and execute them as trajectories in a fully
online and optimal fashion. Our method invokes two pro-
cesses asynchronously at high frequency: a centralized plan-
ner that quickly computes simultaneous multi-agent paths for
an N -robot team on a discrete space in R3, and N order-2
optimal trajectory controllers that ensure that all agents in-
dependently follow their assigned paths reliably. By fusing a
fast replanning with online control, our method, termed lf,
provides a mechanism to perform multi-robot navigation with
arbitrary goal assignments.

Introduction
Efficiently navigating a team of robots to their respective
destinations – whilst maintaining responsiveness, and avoid-
ing collisions, deadlocks or livelocks – is a crucial skill for
any multi-robot team. However, this skill is non-trivial. De-
ploying such a team in a practical setting often faces numer-
ous challenges in the complexity of planning and control, as-
sumptions on dynamics and environment, and imperfections
in deployment and synchronization [1]. Furthermore, factors
such as non-stationary environments and uncertainties from
inter-robot or human-robot interactions make a single-shot
planning and execution strategy impractical. Ideally, a fast,
reactive motion planner that accounts for team-level replan-
ning is tightly coupled with a high bandwidth (and prefer-
ably onboard) low-level trajectory controller for precise in-
dividual motion control.

Planning and control in the joint-space of the team typ-
ically incurs a high computational cost. Decoupled control
schemes that rely on local observations and communication
have thus received considerably more attention [2, 3, 4, 5, 6].
While their computational efficiency makes them excel at
coordinated behaviors in the short-term, they often lack
long-term guarantees against non-smooth responses and lo-
cal deadlocks, especially in dense and constrained environ-
ments (e.g., with obstacles).

In parallel, recent advances in search-based multi-agent
pathfinding (MAPF) methods have demonstrated remark-
able scalability, handling systems with thousands of agents
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Figure 1: Some timelapse snapshots of five robots executing
collision-free trajectories to random goals with lf.

in short planning timeframes [7, 8, 9, 10]. These algo-
rithms typically use abstracted models, such as discrete syn-
chronous actions within grid-world representations. Despite
this abstraction, the inherent computational efficiency of
such scalable MAPF algorithms opens the door to rapid
multi-robot planning in more advanced and complex plan-
ning domains, with a slight detriment to scalability.

Two key developments motivate this work: (1) fast MAPF
algorithms that can be applied for online replanning, and,
(2) efficient low-level optimal controllers that achieve pre-
cise individual trajectory control. We run our MAPF algo-
rithms more frequently (e.g., 5–100Hz), and use the latest
system state to generate updated plans in real time. Concur-
rently, decoupled and higher-frequency low-level controllers
for each robot account for real-world dynamics and track
the high-level MAPF plans with high fidelity. This hierar-
chical scheme addresses the limitations of fully decoupled
approaches without sacrificing real-time responsiveness.

This MAPF feedback control differs from conventional
MAPF execution studies, which solve MAPF continuously
but at low frequency (e.g. every 1–10 s), such as online re-



planning at each discrete timestep [11, 12], post-processing
MAPF plans with liveness guarantees [13, 14, 15, 16], or of-
fline planning robust to uncertainty [17, 18]. Our approach
is much simpler; by embedding high-frequency MAPF up-
dates directly into the feedback loop, we aim to achieve
seamless and robust multi-robot control.

As a proof of concept, we present the lf framework for
multi-robot control, which combines: (i) a state-of-the-art
coupled MAPF algorithm called LaCAM [19], and (ii) a de-
coupled, low-level optimal trajectory control system called
Freyja [20]. In the following, we describe brief preliminary
results on target robotic systems, architecture, and demon-
strations for drone swarm control.

Architecture
Given the current system state and the target positions as-
signed to each robot, the lf framework periodically and
asynchronously performs the following two processes: (i)
a high-level coordination planner that efficiently solves
MAPF, and (ii) a low-level optimal control mechanism that
continuously adjusts the robots’ trajectories based on the
latest instructions provided by the high-level planner. Typ-
ically, the high-level planner operates at a frequency (e.g.,
5–100 Hz), enabling it to adapt promptly to dynamic and
noisy environments. The low-level controller is executed at
further higher frequencies, depending on the requirements
of the robotic systems, ensuring precise and smooth control
of individual robots. lf adapts LaCAM and Freyja as the
embodiment of this concept.

Target Systems
Our approach is targeted primarily towards holonomic robot
fleets in R3, operating in constrained indoor settings. Ex-
amples include ground-robot platforms such as the Cam-
bridge Robomaster [21], and small aerial platforms such as
the Crazyflie [22] and our in-house multirotor platforms. We
note that our architecture can easily be extended to plat-
forms with other motion models by replacing only the mo-
tion primitives and the dynamics model.

LaCAM
LaCAM is a search-based algorithm designed to effi-
ciently solve large MAPF instances. Building on its re-
cent implementation [19], we have developed a versatile
and user-friendly multi-robot control scheme. Unlike tra-
ditional MAPF implementations, which are restricted to
grid world representations, lf uses Octomap [23], a pop-
ular 3D environment representation in robotics. The search
within LaCAM uses motion primitives inspired by [24] to
generate feasible paths. During the search process, colli-
sion checking is performed using the Flexible Collision Li-
brary (FCL) [25]. To compute heuristics for the search pro-
cess, lf integrates a Probabilistic Roadmap (PRM) [26], a
sampling-based motion planning method that approximates
the workspace with a discrete graph representation. Each
vertex in the PRM is assigned a cost-to-go value calculated
using the backward Dijkstra algorithm [27]. The heuristic of
a given location is then computed via a gradient derived from

the cost-to-go values at the nearest PRM vertices, efficiently
found by the k-nearest neighbour search [28].

LaCAM continues to refine solutions as time allows af-
ter the initial solution discovery. Unlike LaCAM∗ [10], an
asymptotically optimal variant with search-tree rewiring, lf
adapts branch-and-bound refinement. It also incorporates
advanced techniques from [19], including dynamic solution
updates obtained from large neighbourhood search [29, 30].
In addition, path smoothing techniques [31] are introduced
which optimise the paths for continuous spaces while main-
taining collision-free guarantees. By combining the above
techniques, our high-level planner delivers high-quality co-
ordinated paths to the low-level controller quickly.

Freyja
Freyja is a model-based optimal non-linear feedback con-
trol stack for executing fast and agile robot maneuvers. Our
implementation is setup as a collection of three main ROS2
‘nodes’ that perform state estimation, state regulation over
a given trajectory, and vehicle communication handling.
Freyja provides several configurable options for each mod-
ule that are tunable for specific instances and use-cases. In
lf, we use a Kalman filter to estimate the 6-DoF state (along
with its first and second derivatives) using pose measure-
ments from a motion-capture system. A Linear Quadratic
Gaussian (LQG) controller is used as a state regulator to gen-
erate control actions that drive the robot along a path gener-
ated from LaCAM. Due to the differentially flat dynamics of
the system, it is possible to perform planning in R3. Freyja
exploits this property to then map the feedforward-linearized
control actions [32] into the non-linear action space (target
attitude and thrust vectors) of a multirotor. The LQG im-
plementation is extremely robust for a wide range of flight
regimes, and offers high computational efficiency (can be
run at over 200Hz on a Raspberry Pi Zero). For larger prob-
lems with more constraints, Freyja also supports a versatile
model predictive control (MPC) architecture by interfacing
with QP-solver frameworks such as OSQP [33].

Since the paths generated from LaCAM are continuous
but not necessarily smooth, we implement an additional in-
termediate step that performs a linear 2nd-order interpola-
tion for paths. This single-step process enables linearization
over points on a trajectory (i.e., a point with a velocity vec-
tor) as opposed to individual points in space, thus producing
smoother motions.

Demonstration
As a proof-of-concept demonstration, we implement the
pipeline for a five-robot random path planning scenario
shown in Figure 2(d). The robots are small customized mul-
tirotor platforms (0.16m diagonal) flying inside a motion-
capture arena that measures (4 × 6 × 4)m3. The full lf
framework is implemented in C++ and runs on a consumer
laptop, which sends individual control commands to each
robot at 100Hz over WiFi. The robots were deployed on a
lifelong basis, with the team being randomly assigned new
targets within the arena after completing the current mission.
The demonstrations showcase the robustness of lf, even in
the presence of dynamic obstacles.
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(a) One-shot deployment.
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(b) Replanning with 5Hz.
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(c) With dynamic obstacles.
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(d) A top-down view of trajectory tracking
for 5 agents from (b), with two static

obstacles, shown in gray squares.

Figure 2: Planning and tracking with lf: five multirotors in the presence of two pole-shaped obstacles. The figures include
(top) the tracking error between high-level planner and actual positions, and (bottom) the minimum inter-robot distance for a
one-minute flight. We tested three scenarios: (a) control scheme without online replanning, (b) MAPF replanning at 5Hz, and,
(c), same scheme as (b) but with dynamically moving obstacles (manually relocated at random during the flight). In (d), the
trajectories from scenario (b) are visualized, where the dashed lines are from MAPF and the solid lines are the actual positions.
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Tamura, and Xavier Défago. Offline time-independent
multiagent path planning. T-RO, 2023.

[19] Keisuke Okumura. Engineering lacam∗: Towards
real-time, large-scale, and near-optimal multi-agent
pathfinding. In AAMAS, 2024.



[20] Ajay Shankar, Sebastian Elbaum, and Carrick De-
tweiler. Freyja: A full multirotor system for agile &
precise outdoor flights. In ICRA, 2021.

[21] Jan Blumenkamp, Ajay Shankar, Matteo Bettini,
Joshua Bird, and Amanda Prorok. The cambridge
robomaster: An agile multi-robot research platform. In
DARS, 2024.

[22] Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering. In
MMAR, 2017.

[23] Armin Hornung, Kai M Wurm, Maren Bennewitz,
Cyrill Stachniss, and Wolfram Burgard. Octomap: An
efficient probabilistic 3d mapping framework based on
octrees. AURO, 2013.

[24] Liron Cohen, Tansel Uras, TK Kumar, and Sven
Koenig. Optimal and bounded-suboptimal multi-agent
motion planning. In SoCS, 2019.

[25] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl:
A general purpose library for collision and proximity
queries. In ICRA, 2012.

[26] Lydia E Kavraki, Petr Svestka, J-C Latombe, and
Mark H Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces.
ICRA, 1996.

[27] Edsger W Dijkstra. A note on two problems in con-
nexion with graphs. In Numerische mathematik. 1959.

[28] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. CACM, 1975.

[29] Jiaoyang Li, Zhe Chen, Daniel Harabor, P Stuckey, and
Sven Koenig. Anytime multi-agent path finding via
large neighborhood search. In IJCAI, 2021.

[30] Keisuke Okumura, Yasumasa Tamura, and Xavier
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