
Lifelong MAPF and Task Assignment Considering Workers in Warehouses

Naoki Mizumoto,1 Katsuhide Fujita,1 Yoshihiro Ueda,2 Takayoshi Mori,2
1Tokyo University of Agriculture and Technology

2TOPPAN Digital Inc.

Abstract

In this study, we apply multi-agent path finding (MAPF)
to actual warehouse operations. In conventional MAPF,
it is typically assumed that a single type of agent discov-
ers a route toward a single destination. However, this
study focuses on the problem of two types of agents
(robots and humans) working together in warehouse op-
erations by routing to multiple destinations. We propose
an approach that combines task allocation using net-
work flow and route search using a Monte Carlo tree
search and prioritized planning.

Introduction
In recent years, research on the application of multi-agent
systems to various social aspects has been conducted. An
essential application of multi-agent systems is the automa-
tion of picking operations in warehouses. The picking op-
erations involve taking specified items from the shelves of
a warehouse and transporting them to a specified collection
point(Wurman, D’Andrea, and Mountz 2008). In the past,
this task was performed by humans alone. However, the de-
velopment of transport robots is gradually progressing, and
robots have recently been able to pick objects(Liang et al.
2015). However, although such robots are technically feasi-
ble, their high cost makes it challenging to implement them
in practical operations from a financial perspective. In addi-
tion, warehouse layouts would be modified to allow pick-
ing robots to handle items efficiently. Conversely, robots
equipped solely with the ability to load and transport items,
without any picking ability, can be introduced at a relatively
low cost. This study focuses on scenarios in which transport-
specific robots collaborate with human workers who are re-
sponsible for picking tasks.

Many existing studies aim to automate picking tasks in
warehouses(Kou et al. 2020)(Ma et al. 2017)(Liu et al.
2019), but only a few have considered how robots and hu-
mans can work together to perform picking tasks. In ad-
dition, few studies have considered how to assign tasks to
agents to determine which items they should be responsi-
ble for(Ma and Koenig 2016). This means that most exist-
ing studies simplify the experimental setup. Therefore, this

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

study focuses on warehouse picking tasks while considering
task allocation and multi-agent path planning while consid-
ering collisions between robots and workers.

The primary contributions of this study can be summa-
rized as follows:
• We model the warehouse environment and define the be-

havior of robots and workers.
• We propose a method for task allocation to robots and

workers and a path planning and task exchange algorithm
based on this task allocation.

• We evaluate the effectiveness of the proposed task allo-
cation method by evaluating the total work time of all
agents, the total work time of each agent, the number of
collisions, etc. as an evaluation experiment.

In our experiments, we use datasets from actual warehouse
picking tasks.

Related Work
Multi-agent path finding (MAPF) is the process of determin-
ing a route to a destination while considering collisions be-
tween multiple agents(Stern et al. 2019). In particular, the
MAPF problem that considers the case where multiple desti-
nations have been set and agents move to another destination
after reaching one destination is called the Lifelong MAPF
problem(Li et al. 2021).

Formally, the Lifelong MAPF problem is formulated as
a graph theory problem. An unweighted, undirected graph
(G) and a set of agents (A) are given. Each agent (i) is lo-
cated on a node of G and is given an initial position (si)
and multiple destinations (τi), where i = 1, 2, ..., n. Each
agent needs to determine a route from its initial position
to its destination. Agents can move simultaneously and can
move to a neighboring node, i.e., a node connected by a
link, only in each 1 step. However, agents must not cause
a collision, such as using the same node or link simultane-
ously. The Lifelong MAPF problem involves determining
a route for all agents to reach all destinations under these
conditions. Note that the order of the destinations of each
agent, τi = {τi1, τi2, ..., ..., τiK}, may be changed. In ad-
dition, when the destination (task) can be freely assigned to
any agent, it is called anonymous MAPF(AMAPF).

Solutions to Lifelong MAPF include approaches that use
nonlearning algorithms (Jiang et al. 2024) and PRIMAL2,

Figure 1: Condition for picking

which employs distributed reinforcement learning (Damani
et al. 2021). In Lifelong MAPF, goals are assigned contin-
uously; however, they can be addressed by adapting solu-
tions from one-shot MAPF. However, this method does not
consider human workers and assumes only the presence of
robots. Furthermore, in this study, multiple items (goals)
are assigned to agents, and these items must be allocated to
robots, making the problem more complex than in previous
research.

Problem Statement
Most of the formulations are the same as those for Lifelong
MAPF demonstrated in related studies; however, some spe-
cial constraints are provided.

The map information is provided as an undirected graph
G. There are two types of agents: robots and workers. Here,
each agent is given an initial position (xi, yi). Tasks are
given in units called order sets T . An order set consists of
multiple orders (τ1, τ2, . . . , τN), and each order is associ-
ated with a node on the graph. A robot has B boxes for
loading order sets; thus, it can process up to B order sets
in a single task assignment. Orders cannot be processed by
a robot alone; they need to be picked up in cooperation with
a worker. To select an order, if the node number correspond-
ing to the order is v, the robot and worker must each stay at
node numbers v and v + 1 for T s. After processing several
order sets, the robot returns to the depot to unload the order
sets and empty the box. By repeating this process, all order
sets are processed.

Although it is technically feasible to manage the posi-
tion of workers, practical implementation incurs significant
costs. In addition, workers may not necessarily follow the
exact path determined by the algorithm. However, it is pos-
sible to identify which shelves workers performed picking
tasks during inventory management. Furthermore, even if
human movements slightly deviate from the simulation, they
are expected to avoid collisions and follow relatively short
paths. The method proposed in this study is scalable and
computationally efficient, allowing recalculations at each
step. This enables rapid calibration in response to minor de-
viations. Therefore, it is reasonable to conduct simulations
and experiments using the path planning results generated
by the algorithm, as is done with robots.

Proposed Method
Task Assignment
The task assignment comprises the following components.

1. Order set assignment

Figure 2: Network flow for matching

2. Determining the sequence of visiting assigned order sets

3. Task assignment to workers

4. Task exchange during a route search

Order Set Assignment
The locations where tasks occur tend to be congregated.
Therefore, we avoid collisions between agents by cluster-
ing order sets. Let (xi, yi) be the coordinates of the ith order
in the order set. Then, the center of gravity of the order set
(x̄, ȳ) = (1/N)(xi + yi), is calculated. Based on the coor-
dinates of the center of gravity, clustering is performed us-
ing the k-means method. Then, tasks belonging to the same
cluster are assigned to the same agent. Here, the clusters that
each agent is in charge of are assigned to be as different as
possible.

Determining Sequence of Visits for Assigned Order
Set
The order set is random; thus, it is necessary to determine
the appropriate sequence of visits. It is better to consider
collisions in the sequence of visits; however, this approach
incurs significant computational costs in practice. Therefore,
we apply the results of solving the problem involving a sin-
gle agent. In the case of a single agent, it is sufficient to
determine the sequence to visit a set of orders on a graph,
T = {τ1, τ2, . . . , τ|T |}. This problem is well-known as the
traveling salesman problem (TSP). The TSP searches the
shortest route that visits all vertices exactly once and returns
to the starting point at the end. The TSP is NP-hard; how-
ever, approximate and exact solutions have been proposed.
In this study, we use 2-opt(cro 1958) to find an approximate
solution.

Task Assignment to Workers
Unlike robots, workers only perform picking tasks with
robots. Therefore, there is no need to assign tasks to work-
ers in units called “order sets,” and tasks can be assigned
one-to-one to the nodes that robots will visit at each step. In

Figure 3: MCTS-PP for Multi-agent Path Finding

other words, weighted bipartite matching between the desti-
nations of workers and robots is sufficient. This problem can
be formulated and solved as a minimum cost flow problem,
which is a network flow problem. A graph is created sepa-
rately for the network flow from the map information. First,
we prepare vertices S and T for convenience. The vertex S
is connected to the destination Ri of the ith robot with an
edge of capacity 1 and cost 0. Similarly, the ith worker Ci is
connected to vertex T with an edge of capacity 1 and cost 0.
The robot’s destination Ri is connected to worker Cj with an
edge of capacity 1 and cost cij. Here, cij is determined by
the distance between the robot’s destination and the worker.
The minimum cost of the flow is calculated as much as pos-
sible with starting point S and endpoint T in this graph. The
edges between the robot’s destination and the worker are al-
located to the worker from the flowing edges.

Task Exchange During Path Search; TE
Tasks should be allocated to avoid collisions as much as pos-
sible at the time of order set allocation. However, tasks must
be allocated in units of ”order sets”; therefore, it is difficult
to avoid collisions. If two agents aim for the same node dur-
ing a route search, negotiations are held, and the agent with
the longer distance to the destination changes its destination.
The destination column is arranged such that the distance
between them is reduced using the TSP; thus, the exchange
cost is relatively small.

Multi-agent Path Finding
Prioritized planning (PP) is a simple method for solving
Lifelong MAPF(Erdmann and Lozano-Perez 1986)(Silver
2021). PP searches for a path using the following procedure.

1. Each agent is assigned a priority. The priority is deter-
mined by considering the shortest distance to the destina-
tion and the matching of robots and workers.

2. The path to the destination of the agent with the highest
priority is searched. Here, collisions with the path decided
by the agent with higher priority are avoided.

PP has low computational complexity and is excellent in
terms of responsiveness when a solution can be found. How-
ever, PP does not guarantee the discovery of feasible solu-
tions. Therefore, if a route cannot be found using PP, it is
searched using Monte Carlo tree search (MCTS)(Browne et
al. 2012). MCTS has achieved good results in games such as
chess and Go(Silver et al. 2016). MCTS is also applicable to

multi-agent systems, including MAPF problems(?)(Pitanov
et al. 2023)(Skrynnik et al. 2024). MCTS constructs a search
tree based on random sampling. It is important to consider
which actions to search for and how to evaluate searched
nodes. Each node in the Monte Carlo tree represents a state
comprising the positions of the agents and the progress of
the picking tasks. A parent node generates potential next-
step states by reflecting the possible plans of each agent
based on its current state. The generated states are then ex-
panded as child nodes. When selecting an action, the action
with the most recent future action is determined and selected
using UCB1-tuned(Auer 2002)(Tak, Lanctot, and Winands
2014):

UCB1turned = x̄a +

√√√√ logN

na
min

(
1

4
.x̂a +

√
2 logN

na

)

Here, x̄a denotes the average reward of the child node, N
denotes the total number of trials, na denotes the number of
trials for the child node, and x̂a denotes the variance of the
reward of the child node. The reward obtained during back-
propagation is determined by assuming that each agent has
reached the destination. If the destination is reached, the re-
ward is 1; otherwise, the reward is 0. Furthermore, if the dis-
tance between the current node and destination is less than d,
the reward is 0.1. If the same action is selected θ times, a fur-
ther search is performed from that action. In the expansion,
all possible actions of the next agent are expanded according
to the priority used in PP.

Algorithm 1 MAPF algorithm
Require: priorities: List of agent priorities
Ensure: routes: List of planned routes

1: routes← [None]×N
2: for i in priorities do
3: routes[i] ← PPSolution(agents[i]) {Returns an

empty array if no collision-free route exists}
4: end for
5: if exists empty(routes) then
6: routes← MCTSSolution(priorities, agents)
7: end if

Evaluation
Experimental Setup
We used one map and three order sets for the evaluation. The
map had a typical warehouse structure and corresponded to
982 nodes in the graph representation. The picking task re-
quired T = 3 steps. We used three task sets, with each set
containing 447, 481, and 826 tasks. During execution, the
MCTS algorithm performed 1000 selection–expansion iter-
ations.

• Dataset 1 includes the first task set, 5 robots, and 3 work-
ers.

• Dataset 2 includes the first task set, 7 robots, and 7 work-
ers.

Table 1: Makespan and AR values of MCTS-PP + TE + TSP,
MCTS-PP + TSP, and MCTS-PP + TE on datasets 1 ‒ 6

Method Makespan AR
Dataset 1 MCTS-PP + TE + TSP 1995.0 0.8

MCTS-PP + TSP 1993.2 0.2
MCTS-PP + TE 4072.3 1

Dataset 2 MCTS-PP + TE + TSP 1968.0 0.7
MCTS-PP + TSP 1993.0 0.2
MCTS-PP + TE 4072.3 1

Dataset 3 MCTS-PP + TE + TSP 4002.4 1
MCTS-PP + TSP 4036.1 1
MCTS-PP + TE 4213.0 1

Dataset 4 MCTS-PP + TE + TSP 2435.9 0.8
MCTS-PP + TSP 2429.3 0.3
MCTS-PP + TE 4298.4 1

Dataset 5 MCTS-PP + TE + TSP 4002.4 1
MCTS-PP + TSP 4036.1 1
MCTS-PP + TE 5528.6 1

Dataset 6 MCTS-PP + TE + TSP 3167.4 0.9
MCTS-PP + TSP 3379.5 1
MCTS-PP + TE 4106.0 1

• Dataset 3 includes the second task set, 5 robots, and 3
workers.

• Dataset 4 includes the second task set, 7 robots, and 7
workers.

• Dataset 5 includes the third task set, five robots, and 3
workers.

• Dataset 6 includes the third task set, 7 robots, and 7 work-
ers.

The experiments were conducted 10 times using the same
dataset and methodology. The evaluation was based on the
average makespan and achievement rate (AR) of complet-
ing all tasks. Here, makespan represents the number of steps
required to complete all tasks.

Experimental Results
In Table 1, the makespan of MCTS-PP + TE+ TSP is signif-
icantly reduced across all datasets. This result implies that
the integration of MCTS-PP + TE+ TSP provides substan-
tial value even with a one-shot TSP approach. Although the
difference between MCTS+TE and the proposed method is
small, MCTS+TE achieves slightly better performance and
improves the AR.

In Table 2, the makespan of the approach with clustering
is reduced compared to that of the approach without clus-
tering. However, no significant difference is observed in the
AR. In addition, the appropriate value of k varies depending
on the dataset.

Conclusion
We focused on the MAPF problem modeled by actual ware-
house picking tasks. We proposed an approach that com-
bines task allocation using network flow and route search
via MCTS and PP. The proposed approach achieved high

Table 2: Effect of varying k values in k-means method
k makespan AR

dataset 1 1 1968.0 0.7
2 2023.8 0.6
3 2013.5 0.8
4 1995.0 0.8

dataset 2 1 2234.2 1
2 2049.6 0.9
3 2064.3 1
4 1960.0 1

dataset 3 1 2573.1 0.7
2 2439.9 0.8
3 2444.1 0.7
4 2435.9 0.8

dataset 4 1 2694.5 1
2 2474.1 1
3 2387.8 1
4 2375.9 1

dataset 5 1 4376.9 1
2 4002.4 1
3 4079.6 1
4 4037.7 0.9

dataset 6 1 4376.9 1
2 4002.4 1
3 4079.6 1
4 4037.7 0.9

performance in terms of makespan and AR based on evalua-
tions on actual datasets. In addition, the proposed approach
was analyzed using ablation studies.

References
Auer, P. 2002. Finite-time analysis of the multiarmed bandit
problem.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1):1–43.
1958. A method for solving traveling-salesman problems.
Operations research 6(6):791–812.
Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021.
Primal 2: Pathfinding via reinforcement and imitation
multi-agent learning-lifelong. IEEE Robotics and Automa-
tion Letters 6(2):2666–2673.
Erdmann, M., and Lozano-Perez, T. 1986. On multiple mov-
ing objects. In Proceedings. 1986 IEEE International Con-
ference on Robotics and Automation, volume 3, 1419–1424.
Jiang, H.; Zhang, Y.; Veerapaneni, R.; and Li, J. 2024.
Scaling lifelong multi-agent path finding to more realistic
settings: Research challenges and opportunities. In Pro-
ceedings of the International Symposium on Combinatorial
Search, volume 17, 234–242.
Kou, N. M.; Peng, C.; Ma, H.; Kumar, T. S.; and Koenig, S.
2020. Idle time optimization for target assignment and path

finding in sortation centers. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, 9925–9932.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021. Lifelong multi-agent path finding in
large-scale warehouses. Proceedings of the AAAI Confer-
ence on Artificial Intelligence 35(13):11272–11281.
Liang, C.; Chee, K.; Zou, Y.; Zhu, H.; Causo, A.; Vidas, S.;
Teng, T.; Chen, I.; Low, K.; and Cheah, C. 2015. Automated
robot picking system for e-commerce fulfillment warehouse
application. In The 14th IFToMM World Congress, vol-
ume 1.
Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and path
planning for multi-agent pickup and delivery. In Proceed-
ings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS).
Ma, H., and Koenig, S. 2016. Optimal target assign-
ment and path finding for teams of agents. arXiv preprint
arXiv:1612.05693.
Ma, H.; Li, J.; Kumar, T.; and Koenig, S. 2017. Life-
long multi-agent path finding for online pickup and delivery
tasks. arXiv preprint arXiv:1705.10868.
Pitanov, Y.; Skrynnik, A.; Andreychuk, A.; Yakovlev, K.;
and Panov, A. 2023. Monte-carlo tree search for multi-
agent pathfinding: Preliminary results. In International Con-
ference on Hybrid Artificial Intelligence Systems, 649–660.
Springer.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484–489.
Silver, D. 2021. Cooperative pathfinding. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment 1(1):117–122.
Skrynnik, A.; Andreychuk, A.; Yakovlev, K.; and Panov,
A. 2024. Decentralized monte carlo tree search for par-
tially observable multi-agent pathfinding. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38,
17531–17540.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, 151–158.
Tak, M. J. W.; Lanctot, M.; and Winands, M. H. M. 2014.
Monte carlo tree search variants for simultaneous move
games. In 2014 IEEE Conference on Computational Intelli-
gence and Games, 1–8.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9.

