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Abstract

Truck dispatching has been a critical component of open-pit
mining systems, directly influencing productivity and opera-
tional efficiency. Effective dispatch orders can directly reduce
cycle times and improve throughput. This paper introduces a
novel reinforcement learning-based truck dispatching system
designed to address scheduling challenges in a dynamic envi-
ronment. By employing a DDQN model, the approach aims
to accomplish the objectives. A centralized agent monitors
the entire fleet, leveraging a detailed state representation of
trucks, shovels, and destinations. The model is deployed in
a simulated environment created based on real-world data to
assess it’s performance.

Introduction

One of the primary methods for mineral extraction, open-pit
mining, accounts for a significant portion of global mineral
production involving large-scale operations requiring exten-
sive use of trucks, shovels, and processing plants to trans-
port vast quantities of material. Material transportation alone
constitutes more than 50% to 60% of total operational costs,
emphasizing the importance of efficient truck dispatching
systems (Moradi Afrapoli, Tabesh, and Askari-Nasab 2017;
Mirzaei-Nasirabad et al. 2023; Yao et al. 2023). Inefficien-
cies in scheduling dispatch orders result in significant pro-
ductivity losses and cost overruns, especially, while consid-
ering the dynamics of the environment. Hence, developing
advanced dispatching techniques is crucial to address these
challenges and achieve optimized operations.

With research being conducted over the years, various
methods have been proposed to handle the truck dispatch
challenge. Stochastic models have been one of the most
commonly used approaches for handling uncertainties in
terms of travel times, queue lengths, and equipment avail-
ability for improved decision-making processes. For in-
stance, Mirzaei-Nasirabad et al. was able to minimize the
fleet waiting times while ensuring deviations from produc-
tion requirements were minimal. Another study published
by Wang et al. introduced a multi-objective programming
model for reducing queue times and optimizing production
flows based on real-time adjustments.
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Recently, there has been a huge shift towards Reinforce-
ment Learning models as an alternative to stochastic models,
considering its ability to adapt to dynamic environments. To
minimize operational delays and improve fleet productivity
under uncertain and variable mining conditions, Noriega and
Pourrahimian developed an RL-based framework for dy-
namically optimizing truck-shovel assignments. Huo, Sari,
and Zhang proposed a DDQN framework based on real-
time operational conditions to optimize truck dispatching,
thereby significantly reducing fuel consumption, and ensur-
ing the greenhouse gas (GHG) reduction targets are met.

This paper proposes a centralized reinforcement learning-
based truck dispatching system for open-pit mines. Unlike
traditional multi-agent frameworks, the proposed model em-
ploys a single agent utilizing a Double Deep Q-Network
(DDQN) (Van Hasselt, Guez, and Silver 2016) to optimize
truck-shovel-destination assignments dynamically. The ac-
tion space consists of discrete assignments each represented
as a combination of truck, shovel, and destination. The state
space encodes operational parameters for trucks, shovels,
and destinations. A simulation environment mimics the real-
world scenario and provides real-time updates on the state
variables, enabling the model to iteratively select optimal
actions, execute them in the simulated environment, and re-
ceive feedback in the form of rewards. This interaction trains
the model to minimize overall cycle times and adapt dynam-
ically to operational uncertainties.

Related Works

While many kinds of research have been conducted through-
out history for solving the truck dispatch problem, there
were 2 common objectives: (1) Increase productivity and (2)
Reduce cost overruns. Since the late 1970s, many mining
companies have adopted various mathematical optimization
techniques to solve the problem (Munirathinarn and Yin-
gling 1994; White and Olson 1987). Generally, the problem
is divided into multiple stages where the goal of the initial
stage will be to determine the target material flow rate for
each path for each scenario to maximize productivity fol-
lowed by dynamically assigning trucks in the next stage to
meet the objective (White and Olson 1987).

One common approach to solving the problem is creat-
ing a multi-objective optimization framework in which the
model uses a simulation to replicate dynamic mining oper-



ations and various optimization algorithms to balance ob-
jectives (Kazemi Ashtiani et al. 2023). Another approach
would be utilizing a multi-agent system to create various
autonomous agents that represent various trucks to make de-
centralized decisions based on real-time data to handle vari-
ous uncertainties (Noriega and Pourrahimian 2018).

However, one of the biggest limitations of mathemat-
ical optimization frameworks is scalability when dealing
with more variables. This shifted the research towards Re-
inforcement Learning models. Huo et al. proposed a Q-
learning-based framework for optimizing fuel consump-
tion where each truck is considered a separate agent. An-
other approach was proposed by Noriega, Pourrahimian, and
Askari-Nasab where a centralized Double Deep Q-Learning
(DDQN) framework was combined with a discrete event
simulation (DES) environment to capture the stochastic dy-
namics of truck-shovel cycles for meeting ore and waste
quantity targets. In another study, Zhang et al. developed
a multi-agent Deep Q-Learning approach using experience-
sharing and memory-tailoring techniques for optimizing dis-
patch decisions by minimizing queuing and starvation times
leading to significant improvements in terms of productivity
when compared with traditional methods.

Methodology

The final stage of open-pit mining involves truck dispatch-
ing decisions to meet production goals and maintain opera-
tional efficiency. A dispatch plan involves assigning trucks
to transport materials between shovels and dumps based on
factors like shift timing, resource availability, material qual-
ity, etc. Consider an open-pit mine having S shovels, D
dumps, and T trucks. Each shovel s; € {s1,s2,...,55}
is responsible for loading the materials onto the truck which
gets unloaded at the dump dj, € {dy,ds,...,dp}. Trucks
t; € {t1,ta,...,tr} cycle between shovels and dumps, per-
forming various operations as shown in Fig la. The dis-
patcher must consider various factors like truck travel times,
queue times at shovels and dumps, and other unpredictable
cycle delays making the decision-making process extremely
difficult.

In this paper, we employ a centralized Reinforcement
Learning framework called Deep Reinforced Agent for
Open-Pit Mining (DRAOM) that utilizes the DDQN algo-
rithm (Van Hasselt, Guez, and Silver 2016) to make dispatch
decisions. In this, the RL agent interacts with the DES en-
vironment created using SimPy (Matsuyama, Klausmann,
and Team 2024) which simulates the open-pit mining op-
eration by capturing various real-world elements such as
truck movements, shovel operations, and queue dynamics.
As shown in fig 1b, the RL Dispatcher monitors the current
system state by capturing various activities and assigns op-
timal tasks to each available truck. The feedback received in
the form of rewards based on the activities helps the model’s
training process improve its overall decision-making ability.

Agent

Instead of considering each truck as a separate agent, we
have a centralized dispatcher who acts as the agent, monitors
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Figure 1: (a) Environment showcasing the decisions made
by the dispatcher. Once the truck has completed loading
from the shovel or unloading at the dump, the dispatcher
must provide the next location for the truck to carry out its
task. (b) Various actions are involved in a truck cycle. A RL
Dispatcher decides the actions for each truck based on the
current state.

various environmental activities, and assigns the right task to
the truck. The agent can make better-informed decisions by
having a holistic view of the environment.

Action Space

The action space is a set of all possible assignments of trucks
to shovels and dumps. Each action is represented by a tuple
(ts, 84, dy). Considering the fact that only certain resources
will be available for a given shift, a masking mechanism
is implemented that filters out illegal actions, allowing the
agent to choose only the legal ones. This ensures that while
the size of the action space remains fixed, the model can dy-
namically adjust itself based on the resource constraints.

State Space

The state space captures the current status of the system by
incorporating all the features of truck, shovel, and dump.
The state space is a concatenated array consisting of the fol-
lowing components:



1. Truck Features: For each truck ¢;, the state includes:

* 0y,: Operational status of the truck.

* [;,: Loading duration.

* d;,: Dumping duration.

* 14,: Time spent in laden travel.

* r,: Time spent in unladen travel.

* ¢, Payload capacity of the truck.
2. Shovel Features: For each shovel s;, the state includes:

* as,: Availability of the shovel.

* gs,: Number of trucks queued at the shovel.

* s, Ore grade at the shovel.

* sr,: Stripping ratio at the shovel.
3. Dump Features: For each dump dy,, the state includes:

* agq,: Availability of the dump.

* ¢4, Number of trucks queued at the dump.
Similar to the action space, all the unavailable resources are
marked as null indicating that the current resource is unavail-
able. This ensures that the model does not consider these

resources in its calculation so that they don’t affect the pre-
dictions for the next state.

Reward Function

The reward function is a critical component that guides the
agent towards making optimal decisions. The reward func-
tion is given as follows:

R= Rcycle + uneue + Rsite + Rinvalid + Rcompletiona (1)

Reyele s the difference in total cycle time across all trucks
between the current (t) and next (t+1) state. R¢ycle is given
by:
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where Iy, dy,, t+,, and 7, are the loading, dumping, laden
travel, and unladen travel times for truck ¢;, and l;i, d;w t;i,
r; are the corresponding times in the next state.

Rgueue adds a penalty based on the queues at shovels and
dumps.
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where q;j and q;k are the queue lengths at shovel s; and
dump dj, in the next state.

Rgite calculates the reward based on the ore grade and
stripping ratio at all the shovels where the trucks are cur-
rently queued.
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where g;j is the ore grade, and sr;j is the stripping ratio at
shovel s; in the next state.

Rinvaliq adds a penalty when the truck is assigned to per-
form an unauthorized action while R opmpietiion TeWards the
model when the task is completed.

Model Training

The ability of the DDQN model to mitigate the overestima-
tion bias of traditional Q-Learning by decoupling the action
selection and evaluation processes makes it suitable for our
problem. At each step, the agent chooses an action a; using
epsilon-greedy strategy (Sutton and Barto 2018) where ei-
ther the random action is chosen based on probability € or
the best action maximizing the Q-value is chosen with prob-
ability 1 — e. After observing the next state s;+; and reward
¢, the Q-value is updated as follows:

Qrew(5¢,a¢) < Q(s¢,ae) +a- |1+ - mng(stH,a)

~QGsuar),
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where « is the learning rate and + is the discount factor.
During the training process, the experiences are sampled
from the relay buffer and calculated using the target network
to calculate the target Q-values. The loss is then calculated
by applying CrossEntropyLoss between the predicted and
target Q-values. The agent then updates the primary network
through backpropagation and performs a soft update of the
target network to stabilize learning. The Hyperparameters
used for training the model are listed in table 1.

Hyperparameter Value
Epsilon Decay (€decay) | 0.99
Discount Factor () 0.99
Learning Rate () 1x1078
Soft Update Factor (7) | 0.001
Batch Size 64
Replay Buffer Size 10,000

Table 1: DDQN model Hyperparameters

Once in every 20 episodes, certain resources are made un-
available thereby ensuring that the model also learns how to
make decisions with the available resources.

Results

The model was tested in a simulation environment having
14 trucks, 6 shovels, and 11 dumps across four 6-hour shifts
with varying resource availability. The results were com-
pared with those generated from a heuristic model originally
used to make decisions on the site.

Queue Time Evaluation

The RL model has showcased its ability to make optimized
decisions by reducing the average queue time for various
trucks. Fig 2a demonstrates that the RL model has reduced
the overall queue time by an average of 12% with significant
performance improvements for some trucks, while others



show marginal improvements. On the other hand, all trucks
achieve around 65% of trips with zero-queue delays as indi-
cated in fig 2b which is a significant improvement over the
traditional method.
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Figure 2: (a) Average queue time (in seconds) for each truck.
(b) Percentage of trips with zero queue time for each truck.

Average Cycle Time Evaluation

The time a truck takes to complete a cycle is defined as
the cumulative sum of queue time, loading time, dumping
time, and the time it takes to travel from one place to an-
other place. Although there is a general reduction in the
average cycle time for each truck as shown in fig 3, some
trucks spend more cycle time on average than their tradi-
tional counterparts. This may occur because the RL dis-
patcher chooses locations far apart to reduce the time wasted
in queues.
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Figure 3: Percentage difference in cycle time for each truck.

Conclusion

In this paper, we developed an RL model combined with a
DES environment to simulate an open-pit mine. While the

model outperformed the heuristic model by reducing the av-
erage queue time and cycle time of a truck resulting in an
overall increase in productivity, the model was trained based
on assuming values for ore grades, stripping ratios for shov-
els, and fixed payload for each truck thereby not completely
capturing the real-world variability. Future work will focus
on enhancing the model by integrating production rates, and
variable payloads for trucks, and utilizing actual ore grade
and stripping ratio values to demonstrate more accurate and
realistic performances.
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