
100-Mouse System: a Swarm Robotics Platform and its Intuitive State
Management User Interface

Ryusei Matsumoto1,2 , Shota Yamamoto1,3, Yoko Sasaki1, Keisuke Okumura1,4

Abstract— This paper introduces a multi-robot coordination
testbed called the 100-mouse system and its state management
user interface (UI). The 100-mouse system is an actual multi-
robot platform with 100 robots implemented with ROS2 for
testing Multi-Agent Path Finding (MAPF) algorithms. To iden-
tify the defective parts of a multi-robot system at a glance,
we propose a user-friendly state management interface for
real-time monitoring. It is intuitive, lightweight, and minimally
invasive. We demonstrate its effectiveness through a multi-agent
pathfinding-based pattern formation experiment on a large-
scale swarm robotics platform. The UI successfully monitored
70 robots, detected anomalies, and provided real-time feedback
while minimizing its impact on system performance.

I. INTRODUCTION

Recent advancements in multi-agent planning algorithms
have enabled coordination of thousands of agents [1]–[3].
While these algorithms are primarily designed for robot
deployment, the transition from simulation to real-world
applications, particularly for large-scale teams remains chal-
lenging due to issues such as communication, localization,
and system integration. Real robot platforms play a crucial
role in bridging the gap between simulation and reality,
revealing practical challenges of multi-robot coordination.
While many platforms have been developed for small sys-
tems with a few dozen robots [4], our focus has shifted
to much larger-scale systems, such as those involving 100
robots. At this scale, managing the system becomes sig-
nificantly more complex, requiring substantial human effort
to handle tasks like battery management, communication
monitoring, and system reliability.

In this system, we present the development of a swarm
robotics platform, termed the 100-mouse system, using Robot
Operating System 2 (ROS2), highlighting the challenges of
large-scale deployment. We focus on the human manage-
ment aspects, including the development of a user inter-
face (UI) and visualization tools, which have been largely
overlooked in existing studies. As a proof of concept, we
utilized the developed UI to implement unlabelled multi-
agent pathfinding [5] with 70 robots, which solves pattern
formation specified by user instructions. In what follows, we
describe the system architecture, technical challenges, our
state management system, and a platform demonstration.

II. LITERATURE REVIEW

There are many scalable MAPF algorithms, but only a few
have been implemented on a real hardware platforms [6]–
[8]. Even in these studies, the number of robots deployed

1National Institute of Advanced Industrial Science and Technology, Japan.
2Institute of Science Tokyo, Japan. 3Waseda University, Japan. 4University
of Cambridge, United Kingdom. {matsumoto.ryusei, yamamoto.shota, y-sasaki,
okumura.k}@aist.go.jp

Fig. 1: 100-mouse system.

remains at a few dozen, which does not fully capture
scalability issues. Closely related to our work in terms of
robotic platform are Robotarium [9], [10] and DOTS [11].
Robotarium is a remotely accessible swarm robotics plat-
form that remains freely accessible to anyone. The platform
features safety measures that combine simulation-based ver-
ification of user commands with collision avoidance [9],
[10]. DOTS is a relatively new open-access platform for
industrial swarm robotics platform. The robots used in this
platform have higher performance than other platforms. They
have high computational performance due to their on-board
GPUs, high sensing performance, and real-world payload
capability. However, both platforms are limited to 20 robots
and do not support larger swarm robot systems. The 100
mouse system is distinguished by its scale of order 100. The
uniqueness of the platform is the scalability of the system
scale with inexpensive robots and ROS2, and a UI that
detects anomalies that occur with a large number of robots.

III. 100-MOUSE SYSTEM

The 100-mouse system is a versatile swarm robotics plat-
form based on ROS2, carefully designed to control large-
scale robot fleets consisting of 100 Raspberry Pi Mouse
robots (Fig. 1). This platform can be applied to various
autonomous tasks, such as coordinating robots to form a
specified formation. ROS2 was chosen for its simplicity in
distributed communication, enabling the simultaneous con-
trol of multiple robots. Its flexibility in program modification
is facilitated by node combinations.

A. System design and architecture

The 100-mouse system consists of mobile robots, a central
server, and a positioning system (Fig.2). The ROS2 node
configuration is broadly divided into two components: the
central server and the mobile robots (Fig.3). The central



Fig. 2: System hardware design.

Fig. 3: ROS2 software design.

server aggregates the location data from the positioning
system and computes the routes for all robots with multi-
robot path planning algorithms. This paper takes the TSWAP
algorithm [5] as an example of such a planner, a scalable
unlabelled MAPF algorithm with completeness guarantees.
By replacing the ROS2 node implementing this algorithm
with another, different MAPF algorithms can be easily inte-
grated into the system. Each robot handles posture estimation
via its onboard Inertial Measurement Unit (IMU), motion
generation based on the TSWAP instructions, and motor
control.

a) Mobile robots: The mobile robot uses a Raspberry
Pi Mouse V3 running ROS 2 Humble on Ubuntu 22.04.
It is equipped with an ICM-20948-based IMU for attitude
estimation and a Quuppa QT-1 tag for localization. Each
robot is assigned a unique ROS DOMAIN ID within the
range of 100 to 199, ensuring independent communication.
The robots communicate only with the central server not
with each other. To reduce communication overhead when
managing up to 100 robots, each robot is connected to two
separate Wireless Local Area Networks (Fig.2). The robot’s
posture (/imu/rawXX) is published as a quaternion, which
is derived from the Digital Motion Processor in the IMU
(/imu/data rawXX) and combined with the initial pos-
ture data. The simple move mouse node generates velocity
commands (/cmd velXX) to control the robot’s movement
in up, down, left, and right directions. These commands
are based on the posture (/imu/rawXX) and movement
command (/mouseXX/path) (Fig.3 Mobile robots). Rota-
tional motion is controlled proportionally, while translational

motion is executed at a constant speed of 0.25m/s.
b) Positioning system: Our positioning scheme is based

on the Quuppa Intelligent Locating System, a high-precision
Bluetooth low-energy-based system. It consists of tags trans-
mitting radio signals, locators receiving them, and software
managing the system. In the 100-mouse system setup, 12
locators were installed on the ceiling to track the positions
of 100 tags at 10Hz within an area of approximately 10m×
20m. The location data for all 100 tags, as calculated by the
Quuppa control software, was transmitted to a central server
via UDP communication.

c) Central server: An Ubuntu 22.04 PC with ROS2
Humble served as the central server, aggregating loca-
tion data from each robot and computing routes. The
server runs ROS2 nodes including quuppa pose, pat-
tern publisher, and tswap node (Fig.3 Central server).
The quuppa pose node publishes location data as a
ROS2 topic (/stateXX/quuppa pose) received from
the Quuppa control software. The pattern publisher node
publishes the robots’ goal points (/pattern) defined in
a configuration file. The tswap node invokes the C++
TSWAP algorithm [5] and publishes movement command
(/mouseXX/path) for all robots, as well as goal state topic
(/mouseXX/goal reached) each time a robot reaches
its goal point. Although the central server uses a differ-
ent ROS DOMAIN ID (set to 0), it runs domain bridge
to communicate minimally with the robots on the topics
(/mouseXX/path, /mouseXX/goal reached).

IV. PROPOSAL FOR SYSTEM STATE MANAGEMENT UI

It is difficult to ensure that all technical components
are executed without anomalies in a multi-agent system
managing numerous robots. Such anomalies include sensor
errors, communication delays, and actuator response lags that
can occur independently in each robot. Monitoring for these
unwanted events is critical. Otherwise, accumulating these
small errors will lead to degraded system performance or,
worse, catastrophic failure of the entire system. However,
managing both the individual robots’ states and the overall
system is non-trivial, especially with 100 robots, as it is in-
herently information overflow for human users. An organized
UI is therefore essential for the deployment of large-scale
multi-robot systems; In the following, we first characterize
the requirements for such UI systems and then present our
solution.

1) The visual status should be easily interpretable.
2) The system should be lightweight and capable of dis-

playing real-time information yet capable of handling
large multi-robot teams.

3) The operation of the multi-agent system should not be
affected.

4) Tracking of the robot’s movements and status should
be possible.

A. Implementation of state management UI

To satisfy the above requirements, the proposed state
management UI employs the following.



1) Intuitive visual status monitoring
Individual robot status is monitored through table,
while a top-down view of the multi-agent system is
provided using a positioning system and an overhead
camera. The table and positioning system view are
linked, enabling a simultaneous understanding of each
robot and the system’s overall state (Fig.4).

2) Efficient real-time display
The tables and top-down view are updated every few
seconds. To minimize communication delays, the UI
server is on the same ROS2 network as the cen-
tral server (Fig.4). when communication with robots
in different ROS2 networks is required, data from
multiple topics are aggregated into a single topic
(/mouse1XX/alive judge publisher) on the
robot side, reducing both communication load and the
need for cross-network communication.

3) Minimize interference with multi-agent systems
To maintain system performance, a Quality of Service
policy controls communication reliability through sev-
eral parameters and is configured for communication
between the multi-agent system and the state manage-
ment UI. The History policy is set to ”Keep Last” and
the Reliability policy to ”Best Effort”, ensuring that
real-time status display does not disrupt the system
operation.

4) Robot status and movement tracking
The operational status is inferred from data across
various topics. For instance, by comparing the velocity
command (/cmd velXX) and the actual movement
velocity (/odom), it can be determined whether the
velocity command is correctly transmitted to the motor.
Inferences are also made regarding potential collisions
and posture accuracy based on relevant data.

Fig. 4: State management UI architecture.
The state management UI was implemented using Dash

(https://github.com/plotly/dash), a Python data visualiza-
tion framework integrated with ROS2. Rviz, a 3D vi-
sualizer associated with ROS2, displayed the robots’
positional data via an overhead camera. Each mobile
robot included an alive judger node aggregating mul-
tiple internal topics and publishing them as a sin-
gle topic (/mouse1XX/alive judge publisher). The
mouse1XX subscriber node receives topics from both the
robot and server, which are reflected in the UI.

Fig. 5: State management UI layout and appearance.

B. Display of Status Information for Each Robot

The state management UI table presents a row of records
for each robot, organizing its state into six categories as
shown in Figure 5: Connection, IMU, Motion plan, Mo-
tion generation, Collision, and Posture. It also displays the
record’s update time and the internal robot time. Each
category’s normality or abnormality is determined by the
presence of the relevant topics and the inferred values from
these topics. The table’s structure is as follows:

• Mouse and State section displays the ID and status
of each robot, with possible statuses including Inac-
tive, Operational, Error, and Goal. Robots that have
not communicated with the system are classified as
Inactive. Robots that have subscribed the goal state topic
(/mouseXX/goal reached) are marked as Goal. If
abnormalities are detected in any columns, the robot’s
status is set to Error; otherwise, it is Operational.

• Update time and IMU time section displays the update
time for each record and the robot’s last communication
time (internal robot time), respectively.

• Connection section displays the results of ping tests.
• IMU section displays the presence of the topic

(/imu/data rawXX) related to its operation.
• Motion plan section displays the presence of the top-

ics (/imu/rawXX, /mouseXX/path) related to the
simple move mouse node’s subscription.

• Motion generation section displays the availability
of the topics (/cmd velXX and /odom) related to
the velocity command and odometry. If the velocity
command does not accurately affect the odometry, an
error message is displayed in the corresponding cell.

• Collision section displays the collision occurrences. The
robots are considered to be operating normally if the
values detected by their four light sensors are below a
threshold, averaged over 20 topic receipts.

• Posture section displays posture estimation based on
the robot’s movement command and localization. When
a movement command (/mouseXX/path) is pub-
lished over time with waypoints path1, path2, ..., the
robot is considered to be operating normally if the angle
between the vector of path1 and the vector from the
starting point of path1 to robot’s position prior to the
publication of path2 is within ±90 degrees.



C. Task progress and anomalies via Positioning

The bottom part of the UI tracks progress and anomalies
in the system with a top-down view. The locations of all
robots are displayed based on their positioning data, with
robots that have reached their goals marked (Fig. 5 and
Fig. 7, bottom-left). This provides an overview of each
robot’s task progress. A filtering function allows the display
of only robots in a specific state, enabling users to track
their behavior visually (Fig. 5 and Fig. 7, bottom-right). An
arrow indicating the robot’s travel direction is shown on the
current movement command (/mouseXX/path), allowing
real-time visualization of whether the robot is following the
designated path.

D. Global view visualization with overhead camera

Apart from Fig. 5, we further display the real-time posi-
tions of the mobile robots, in Fig. 6. Positioning data (nu-
merical values), goal points (green squares), movement tra-
jectories (line graph), and goal decision points (red squares)
are also shown. This provides a top-down image of the final
pattern formation, allowing visual evaluation of how closely
the actual configuration matches the intended goal.

Fig. 6: Overhead camera view.

V. EXPERIMENT

A pattern formation experiment was conducted with the
100-mouse system, targeting the pattern “SSS.” Seventy
robots were deployed, and their behavior was continuously
monitored through the developed state management UI.

A. Performance evaluation of the state management UI

Figure 7 presents the state management UI display during
the operation of 70 robots. The performance of the UI in
managing the system is described below.

1) Intuitive visual status monitoring
The status of each robot was conveyed through color-
coded cells indicating normal and abnormal conditions.
Each row in the table represented a robot. For normally
operating robots, all cells were green (Fig.7 mouse51).
When a robot reached its goal, the row was turned
orange (Fig.7 mouse52). Anomalies were indicated by
red cells, with the issue described in the text (Fig.7
mouse50).

2) Efficient real-time display
The table was updated every 3 seconds, and the top-
down view was refreshed every second. For robots
with established communication (Fig.7 mouse50-56),
the internal clock (IMU time) was synchronized within
approximately 3 seconds, confirming correct updates.

3) Minimize interference with multi-agent systems
The 100-mouse system operated effectively with the

state management UI active, showing no significant
impact on performance impact.

4) Robot status and movement tracking
Robots identified as in collision on the UI were con-
firmed to be in collision. However, no clear distinction
was observed in the posture inference display between
correct and misaligned initial postures. Positioning
error may have influenced inference by positioning,
indicating the need for a more accurate positioning
system or alternative methods.

Fig. 7: State management UI in operation.

B. Case studies on abnormality detection

The following events represent anomalies detected by the
state management UI in the 100-mouse system.

1) Detection of communication instability: A communi-
cation failure occurred simultaneously with robot IDs 50 to
99, connected to Router 2, within 10 seconds. During this
period, robots with stable communication continued to move,
whereas those with disrupted communication remained sta-
tionary (Fig.8A, Fig.2). After losing communication, the
robots gradually reconnected. However, as more robots be-
came available, the connection to either Router 1 or Router
2 was lost again.

2) Detection of robot collisions: Collisions were detected
between robots in operation and those that had already
reached the goal (Fig.8B mouse84). Although the TSWAP
algorithm in the 100-mouse system theoretically prevents
collisions, the results suggest that the system design must
account for positioning errors and communication delays in
real-world scenarios.

3) Detection of IMU malfunctions: Some robots were
detected communicating, but their IMUs were deactivated.
When the IMU is deactivated, no subsequent movement
commands are published, resulting in these robots remaining
stationary for several seconds (Fig.8C mouse81, 92, 94).

Fig. 8: Abnormality detection.



VI. CONCLUSION

This paper presents the 100-mouse system, an actual multi-
robot platform for testing MAPF, and its state management
user interface designed to visualize both individual robot
status and the overall state of a multi-agent system. The
UI provides real-time, lightweight updates with minimal
impact on performance. In the 100-mouse system, the UI
successfully identified critical issues such as communication
instability, collisions, and IMU malfunctions, highlighting
key operational challenges. This tool will bridge the gap
between simulation and real-world deployment in multi-
agent path planning, providing valuable insights to improve
future system performance.

REFERENCES

[1] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa
Tamura. Priority inheritance with backtracking for iterative multi-agent
path finding. Artificial Intelligence, 310:103752, September 2022.

[2] Keisuke Okumura. Improving lacam for scalable eventually optimal
multi-agent pathfinding. In Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI ’23, 2023.

[3] He Jiang, Yulun Zhang, Rishi Veerapaneni, and Jiaoyang Li. Scaling
lifelong multi-agent path finding to more realistic settings: Research
challenges and opportunities, 2024.

[4] Jan Blumenkamp, Ajay Shankar, Matteo Bettini, Joshua Bird, and
Amanda Prorok. The cambridge robomaster: An agile multi-robot
research platform, 2024.

[5] Keisuke Okumura and Xavier Défago. Solving simultaneous target
assignment and path planning efficiently with time-independent exe-
cution. Artificial Intelligence, 103946, 2023.

[6] Keisuke Okumura, François Bonnet, Yasumasa Tamura, and Xavier
Défago. Offline time-independent multiagent path planning. IEEE
Transactions on Robotics, 39(4):2720–2737, 2023.

[7] Keisuke Okumura and Xavier Défago. Quick multi-robot motion
planning by combining sampling and search, 2023.

[8] Jungwon Park, Junha Kim, Inkyu Jang, and H. Jin Kim. Efficient
multi-agent trajectory planning with feasibility guarantee using relative
bernstein polynomial, 2020.

[9] Sean Wilson, Paul Glotfelter, Li Wang, Siddharth Mayya, Gennaro
Notomista, Mark Mote, and Magnus Egerstedt. The robotarium:
Globally impactful opportunities, challenges, and lessons learned in
remote-access, distributed control of multirobot systems. IEEE Control
Systems Magazine, 40(1):26–44, 2020.

[10] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames,
Eric Feron, and Magnus Egerstedt. The robotarium: A remotely ac-
cessible swarm robotics research testbed. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 1699–1706, 2017.

[11] Simon Jones, Emma Milner, Mahesh Sooriyabandara, and Sabine
Hauert. Dots: An open testbed for industrial swarm robotic solutions,
2022.


