
COLREG-CBS: COLREGs-Compliant Search-based Path Planning for
Autonomous Surface Vehicles

Kumar Katyayan Jaiswal, Rahul Kulkarni, Saifullah Khan, Schwitaan Iyer,Dr. Sujit P.B.
1 Indian Institute of Science Education and Research Bhopal

Bhauri Bypass Road, Bhopal
Madhya Pradesh, India

kumarkatyayanjaiswal@gmail.com

Abstract

Autonomous surface vehicles (ASVs) are essential for sev-
eral maritime applications, however, they interact with other
marine vessels (non-ASVs) and ASVs in the open sea. Thus,
the collision avoidance algorithms use for ASVs need to meet
COLREGs rules at sea. The current collision avoidance algo-
rithms do not scale with increasing number of agents. In this
paper, we cast the collision avoidance problem as a conflict-
based search problem , that is, COLREGs complaint, called
as COLREG-CBS. We modify the CBS to generate path in
a hexagonal grid search space meeting the COLREGs re-
quirements and also incorporate ”wait” as a possible action
for determining collision free paths. The algorithm’s effec-
tiveness is demonstrated through experiments with real ASVs
and computer simulations.

Introduction
An autonomous surface vehicle (ASV) is an unmanned
vessel that operates on the surface of water without requir-
ing direct human intervention. The key distinction between
an ASV and an unmanned surface vehicle (USV) is that a
USV might be controlled by a human operator indirectly.
An ASV, on the other hand, is a vessel that can operate
on its own without any human interference whatsoever
(Vagale et al. 2021). Multi-Agent Pathfinding (MAPF) is an
artificial intelligence problem that deals with the generation
of optimal paths for agents from their respective start to
goal positions such that none of the agents collide with
static or dynamic obstacles along the paths. The algorithm
presented over here is a centralized MAPF algorithm. , that
is,, there is a common trajectory planner for all the agents, in
this case, ASVs, which generates trajectories for all of them.

Conflict-based search is a centralized algorithm , that is,
known for providing optimal solutions for MAPF problem
instances (Sharon et al. 2015). The formulation of the algo-
rithm can be broken down into three parts:

1. The formulation of the search space, the action space,
and the single agent path finding heuristics.

2. Formulation and visualization of situations where the In-
ternational Regulations for Preventing Collisions at Sea

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(COLREGs) are applicable. Formulation of newer con-
flicts, which constitute a COLREGs violation.

3. The formulation of newer constraints for prohibiting
movements as minimal as possible for producing effi-
cient and low cost paths.

It is important to note that the algorithm is non-reactive in
nature. , that is,, the paths of all the vehicles are planned and
re-planned together at all times and circumstances. ASVs
under the influence of a reactive algorithm would always
tend to take the most preferred action at each timestep; there-
fore such a strategy does not exhaustively search the solu-
tion space. Since the ASVs operate at sea along with other
manned vessels, therefore it is imperative that these vessels
obey the COLREGs. h, the regulations laid down for all the
power-driven vessels operating at the high seas.

Related Work
There is extensive work done towards the COLREGs-
compliant path planning of ASVs while avoiding collisions
(Hu et al. 2022). In the early 2000s, rule-based approaches
were used for path planning where the decision-making of
the ship was dependent on analyzing its current state and
then, according to some predefined rules, choosing the next
possible action (Benjamin 2002),(Naeem, Irwin, and Yang
2012). However, the main limitation of such approaches is
that they are dependent on the handcrafted design of ships,
which is very hard to replicate in real-life vehicles. The hy-
brid methods of path planning involve the use of A*-variants
(Wang and Xu 2020), which involve a global trajectory plan-
ner that plans trajectories considering the static obstacles
and a local trajectory planner that generates instantaneous
waypoints for collision avoidance whenever a dynamic ob-
stacle (another ASV or a ship) is in close vicinity; how-
ever, path optimization is not a priority for such local plan-
ners since they are reactive in nature. Another widely pop-
ular hybrid approach is that of using COLREGs-Compliant
Rapidly-exploring Random Trees (RRT), which randomly
samples the search space to generate local waypoints. Such
an approach might generate hazardous as well as suboptimal
waypoints (Chiang and Tapia 2018). Another famous reac-
tive approach is the use of the potential field method, which
avoids collisions by generating repulsive forces; however,
since this method is also reactive, it does not involve the op-

timization of trajectories (Lyu and Yin 2019). There are var-
ious optimization-based path planners; however, the major
drawback of such path planners is the high computational
cost (Shan et al. 2020),(Zhao et al. 2014). The most recent
approach for designing path planners for ASVs is that of us-
ing Deep Reinforcement Learning (DRL). Deep reinforce-
ment learning methods such as (Wei and Kuo 2022) and
(Wen et al. 2023) demonstrate high efficiency in collision
avoidance. However, using a learning algorithm raises the
question of guarantees. This work attempts to enhance the
ability of path planners to find efficient and low cost paths
through search-based path planning in centralized multi-
agent systems.

Conflict-Based Search
Conflict-based search (CBS) involves finding individual
paths for all the ASVs and storing all the paths in a node.
This is done using a low-level solver. Then, the high-level
solver searches for any conflicts (collisions) within the tra-
jectories of all the vehicles. If a conflict is found, child nodes
are created for each agent involved within the conflict along
with a constraint to prevent the agent from making the move-
ment which led to the conflict. A constraint either prohibits
an agent from walking into a vertex or from crossing a par-
ticular edge between two consecutive timesteps. Then, the
low-level solver computes a new trajectory for the newly
constrained agent in each of the nodes created and the newer
set of trajectories are stored. The total trajectory or path cost
is also stored for each node. The nodes are then stored in a
set. Next, the set returns the node with the lowest path cost
and the whole cycle is repeated until the high-level solver
encounters a node with no conflict.

Action Space
Since MAPF is done on grids and under discretized
timesteps, we divide the whole area into hexagonal grids.
This means that in order to move from one grid to another, an
ASV can move in one of these six directions: North, North-
East, North-West, South, South-East, South-West. At any
timestep, an agent can choose to be at any of the 6 neighbor-
ing grids during the next timestep, or it can decide to Wait
at the current grid.

Path Finding for Individual agents
We require that the algorithm return a trajectory , that is, op-
timal for an individual agent under some specific set of con-
straints. A trajectory is considered optimal if it minimizes
the number of discretized timesteps taken to complete the
journey. For an agent, the total time taken during the journey
is directly proportional to the total distance covered. This is
because, between two consecutive timesteps, the agent can
travel between adjacent grids; however, this direct propor-
tionality breaks with the inclusion of the action of wait.

A*, heuristics and penalties
We choose A* for planning the trajectories. While planning
a path from node j to node n, the agent iteratively chooses
the next unvisited node to visit by finding the node that has

Figure 1: Hexagonal cells.

the lowest value of f(n′) where f(n′) = g(n′) + h(n′),
g(n′) is the total length of the trajectory from the starting
grid to the grid n′. And h(n′) is the total length of the trajec-
tory returned if a path is planned from node n′ to node n. The
agent keeps visiting different unvisited nodes in this manner
until and unless it reaches node n. To ensure that the A* al-
gorithm returns optimal paths, we need to first ensure that
the h − heuristic is admissible and consistent. Therefore,
we choose Chebychev distance as the suitable distance esti-
mator. The Chebychev Distance between grids with centroid
coordinates (a, b) and (c, d) is given by max{|a−c|, |b−d|}.
Since we want to optimize time, our objective is to minimize
the set of actions an agent takes throughout its journey. This
is because the agent performs one out of the seven available
actions at each timestep. However, we should take note that
the units of our heuristics are distance and not time. Now,
this strategy would work in optimizing time if we don’t con-
sider the action of wait. When A* uses distance as a heuristic
rather than time, it might give trajectories that optimize only
the former, even if the agent might have to wait for hundreds
of timesteps.

Penalizing the agent for waiting
To overcome this issue, we introduce some form of penalty
when the agent decides to wait so that the agent doesn’t wait
unnecessarily rather than finding a longer yet quicker path.
To solve this, we introduce special kinds of nodes called
dummy nodes. When an agent decides to wait at a node n
it simply moves to a dummy node n’ which is nothing but
an exact replica of n with the exact same neighbors as those
of n and g(n′) − g(n) = dc, and h(n′) − h(n) = 0, where
dc is basically the distance between the centroids of any two
adjacent nodes. What we are doing is basically penalizing
the agent to move a distance dc without moving any closer
or farther to the target. Let us introduce a quantity called hy-
pothetical distance d′, which is different than d , that is,, the
actual distance covered by the vehicle:

d′ − d = dc ∗ tw (1)

where tw is number of timesteps at which the agent
chooses to wait.
Lemma 1: For an agent traveling from grid a to grid b
subject to some constraints, the path finding algorithm
minimizes hypothetical distance covered during the journey.

Proof: Since, the A* algorithm uses an h-heuristic which
is both admissible and consistent, and to wait means to
move a distance without actually moving an inch in reality,
the hypothetical distance is optimized.

Theorem: For an agent traveling from grid a to grid
b subject to some constraints, the path finding algorithm
returns a trajectory which covers the whole journey within
the minimum possible time.

Proof: Let d and d’ be the hypothetical distances cov-
ered by the trajectories k (the returned trajectory) and k’
(a random trajectory within the solution space) respectively.
Since, we know that d ≤ d’, and -

Hypothetical Distance = dc ∗ t (2)

where t is total number of timesteps required to complete
the journey. Since, between timesteps t and t + 1, the agent
covers a hypothetical distance of dc no matter what action it
takes. Therefore, if tk and tk′ are the times taken by the two
paths,

dc ∗ tk ≤ dc ∗ tk′ (3)
Therefore, tk ≤ tk′ .

COLREGs-COMPLIANT BEHAVIOR ON
GRIDS

We shall briefly describe the collision avoidance rules
(COLREGs). There are two situations during which the
ASVs are expected to comply with the COLREGs. Please
note that the starboard side of a vessel refers to the right
side of a person standing on the vessel and facing its mast,
while port side is exactly opposite to the starboard side.

• Crossing Situation: If two power-driven vessels are
crossing each other’s path such that the chances of col-
lision seem very plausible, the vessel that has the other
on her own starboard side shall take the responsibility
of taking the necessary measures, such as altering its tra-
jectory or waiting, and shall avoid crossing ahead of the
other vessel Figure (3).

• Head On Situation: If two power-driven vessels are meet-
ing on reciprocal courses, then, in order to minimize the
risk of collision, both of them should turn to their star-
board sides so that each shall pass on the port side of the
other Figure (2).

For constraining the movement of vessels, first we de-
velop a procedure for detecting COLREGs-violation among
a set of paths. We state a few characteristics of the trajecto-
ries generated by the algorithm.

• The waypoints generated by the proposed high-level al-
gorithm coincide with the centroids of cells. Moreover,
these waypoints are time stamped. The low - level plan-
ner plans the intermediate waypoints between any two
consecutively time stamped waypoints generated by the
high-level algorithm.

• The gap between consecutive timestamps is uniform and
hence these are called timesteps.

Each node N returned by the high level of the CBS algo-
rithm contains trajectories for each agent involved. We re-
quire a notation for stating the cell location of an agent at
a particular timestep according to the trajectory generated
by the high-level algorithm. Therefore, we equip each node

N with a function x. If according to the set of trajectories
returned by a node N , an agent a traveling from v1 to v2 oc-
cupies a vertex v at time t and takes T timesteps for reaching
its destination, then:

xN (a, t) = v (4)

xN (a, t) = 0 ∀ t > T (5)

xN (a, 0) = v1 & xN (a, T) = v2 (6)

It is simple to observe that the minimum number of grids
that are present within any trajectory for classifying it as
straight or bent is equal to three. We introduce some im-
portant symbols and definitions:

• Representation of a trajectory using notations: The tra-
jectory of an agent traveling from vn to vn′ in T timesteps
can be denoted by v0nv

1
xv

2
yv

2̃
zv

2
xv

3
zv

T
n′ . The super-

scripts denote timesteps and the subscripts denote the
identifiers for each of the cells.

• Sub-trajectory of a trajectory: A trajectory V of the form
vT0
n vT1

xvTn
y is called a sub-trajectory if it is completely

contained within another trajectory V ′, Tn − T0 = 2 and
the vertex occupied at T0 is different than the one occu-
pied at T1.

• A sub-trajectory can be classified into two parts that a
sub-trajectory can be either straight or collision avoid-
ing. If the vertex occupied at T2 according to the sub-
trajectory is different than the the one occupied at T1 and
the centroids of the vertices occupied at T0, T1 and T2 are
collinear. Otherwise, the sub-trajectory is collision avoid-
ing.

• Every sub-trajectory which is not straight may have a cor-
responding imaginary straight sub-trajectory which can
be obtained by finding a vertex v such that the centroids
occupied within the sub-trajectory at T0, T1 and the cen-
troid of v fall in the same line. Any vertex that is not a
part of the actual trajectory but a part of an imaginary
sub-trajectory traversed by the agent is called an imagi-
nary vertex with respect to the agent. In figure (4), the
vehicle’s trajectory deviates by 60◦ towards the green
grid; however, there are red waypoints leading to the
red grid. If it is assumed that the movement from cell-
to-cell is without any delay that is the agent does not
wait at any of the intermediate timesteps, then it can
be assumed that the figure showcases a sub-trajectory
which is not straight however the red waypoints show-
case the corresponding straight sub-trajectory. If accord-
ing to the trajectory of agent a, x(a, T) = vwhite then
this naturally implies that x(a, T + 1) = vyellow and
x(a, T + 2) = vgreen. Note that in this case, vred is an
imaginary vertex.

• If a collision avoiding sub-trajectory has a corresponding
straight sub-trajectory that is involved in an edge conflict
or a vertex conflict with the sub-trajectory of another ves-
sel implies that the former’s sub-trajectory demonstrates
a collision avoiding behavior.

• Apart from the function x, we equip each node with func-
tion x′ to refer the imaginary vertices covered by the

agent due to the angular deviation it takes while suc-
cessively traversing vertices. For example, in figure (4),
x′(a, T + 2) = vred.

• To represent imaginary vertices which are covered by an
agent because of delay, we introduce another function
called S. The function S takes a timestep and the agent
as an input and simply outputs the next immediate ver-
tex that the agent will occupy according to the trajectory
of the agent. S is useful as it allows us to refer to the
next immediate vertex without being aware of the exact
timestep at which the agent will reach the vertex. For ex-
ample, consider a sub-trajectory v0xv

1
yv

2
y which is con-

tained within the trajectory v0xv
1
yv

2
yv

3
z . For this trajectory,

S(a, 0) = vy & S(a, 1) = vz . It can be observed that
the sub-trajectory is certainly not a straight one. The cor-
responding straight imaginary sub-trajectory is v0xv

1
yv

2
z ,

given that the centroids of x, y & z are collinear. There-
fore, in this case, vz becomes an imaginary vertex for the
sub-trajectory. However, under the condition that, x, y &
z are not collinear, the corresponding sub trajectory to
v0xv

1
yv

2
y that is v0xv

1
yv

2
z is not straight. Let vk be a vertex

such that vx, vy & vk are in the same line. Hence, v0xv
1
yv

2
k

is the corresponding straight sub-trajectory. However, in
this special case, both v0xv

1
yv

2
k & v0xv

1
yv

2
z are the corre-

sponding imaginary sub-trajectories. The former is in-
cluded because of the angular deviation, while the latter
is included because of the delay.

• We introduce notations for showing the corresponding
imaginary sub -trajectories of various sub-trajectories
within the actual trajectory of an agent. Consider
the trajectory considered within the previous case
that is, v0xv

1
yv

2
yv

3
z . This trajectory can be rewritten as

v0xv
1
yv

2
yv

2
kṽ

2
zv

3
z . All the vertices which have the same su-

perscript are written together. Therefore, we have found
a way to include both v0xv

1
yv

2
k & v0xv

1
yv

2
z within the ac-

tual trajectory using special symbols. The symbols &˜
are introduced for incorporating the two different types
of sub-trajectories.

• We introduce a symbol ℵ, where k1ℵk2 implies that k1 is
to the starboard of k2.

Figure (11) shows a red vessel over a green grid. If the
vessel travels via the red grid to another green grid shown
within the figure, it can be observed that throughout this
movement, the vessel deviates from its original direction by
an angle of 60◦ however, if a vessel travels via red to another
yellow grid, then the deviation is of 120◦.

If agent a makes no turn at t - 1 or t is greater than T ,
that is, the total number of timesteps taken by the agent to
complete its journey, then :

x′N (a, t) = 0 (7)

For an agent a which completes its journey in T timesteps,

SN (a, t) = xN (a, t′) where t′ ∈ {t+ 1, T − 1} (8)

such that xN (a, t′) ̸= xN (a, t′ − 1) = xN (a, t) (9)

and SN (a, t) = 0 if t ≥ T (10)
Note that if an agent a waits from t - 1 to t .t xN (a, t − 1)
= xN (a, t), then

SN (a, t− 1) = SN (a, t) (11)
Let the symbol B denote a blue vessel and R denote a red

vessel. In Figure (7), had B not turned and maintained its
course over the green grid, it would have been in a vertex
conflict with R over the red grid at timestep t. Now, this is a
violation of COLREGs since it is the responsibility of R to
take the necessary measures as mentioned within the Cross-
ing Situation of COLREGs. This is because B ℵ R at t - 1.
Therefore, if Ta & Tb denote the trajectories of a and b re-
spectively then a pair of vessels a and b are in a secondary
vertex conflict denoted by (a,b’,v,t) if :

vt ⊆ Ta & vt ⊆ Tb and b ℵ a at t - 1 (12)
given that,
̸ xN (b, t− 2)cxN (b, t− 1)cSN (b, t− 1)c = 120◦ (13)

else, if vt ̸⊆ Tb:
ṽt ⊆ Tb (14)

xN (a, t) = SN (b, t) = SN (b, t− 1) = v and b ℵ a at t - 1
(15)

Note that the subscript of c in xN (x, t)c denotes the coor-
dinates of the centroid of that particular vertex. Any angle
mentioned in the form as mentioned in equations (13) & (18)
is referring to the interior angle Figure (14). In figure (8), R
turns over the green grid, thus creating imaginary waypoints.
Note that R would have been in a head-on collision with B
had it not turned or waited. Moreover, B maintains a straight
course throughout the yellow grid. It seems as if R moves to
its starboard but B does not. If T ′a is the trajectory of a, con-
taining only the real vertices visited by a, then vessels a and
b are in a secondary edge conflict denoted by (a’,b,v1,v2,t),
if:

vt−12 v1
t ⊆ Tb (16)

vt−11 v2t ⊆ Ta & vt1 ̸⊆ Ta (17)
if xN (b, t− 2) ̸= xN (b, t− 1), then:

̸ xN (b, t− 2)cxN (b, t− 1)cxN (b, t)c = 0◦ (18)
Figure (13) also shows a similar secondary edge conflict

when R takes a sharp turn. Figure (9) contains two figures
showing an edge conflict between the imaginary waypoints
of R and B. Vessels a & b are in a secondary edge conflict
denoted by (a’,b’,v1,v2,t) if :

vt−11 vt2 ⊆ Ta & vt−12 vt1 ⊆ Tb (19)
given that

k1 = k2 = 120◦ (20)
except if at t - 1, SN (a, t− 1) ℵ a & SN (b, t− 1) ℵ b, Fig.
9 (left). or,

vt−11 ṽt2 ⊆ Ta & vt−12 vt1 ⊆ Tb (21)
given that

k1 = 120◦ & k2 = 0◦ (22)
where

k1 = xN (b, t− 2)cxN (b, t− 1)cSN (b, t− 1)c (23)
k2 = xN (a, t− 2)cxN (a, t− 1)cSN (a, t− 1)c (24)

Figure 2: Head On Colli-
sion avoidance

Figure 3: Crossing colli-
sion avoidance

Figure 4: Imaginary path
for a turning vehicle.

Figure 5: Imaginary path
for a waiting vehicle.

Figure 6: Vessel taking a
sharp turn over the red
grid.

Figure 7: Violation of
the Crossing Rule shown
over the red grid.

Figure 8: The imaginary
trajectory of the red ves-
sel creating an edge con-
flict with the actual tra-
jectory of the blue vessel.

Figure 9: Violation of the
Head On Rule shown in
the right figure and the
COLREGs-compliant
version shown within the
left figure.

Figure 10: 4 vessels
standing at their starting
points with the grid
which is of the same
color as them being their
respective destination.

Figure 11: Colored grids
for showing the kinds of
turns the red vessel can
take.

Figure 12: A COLREGs compliant Conflict-Based Search
tree for finding COLREGs-compliant set of optimal trajec-
tories for the problem presented in Fig. 10.

Figure 13: Secondary
edge conflict when R
turns sharply.

Figure 14: Vertices A,B
and C forming an Interior
Angle ̸ ABC = ̸ CBA
= 120◦

Colregs-Compliant Conflict-based search
Conflict-based search has two constraints at its disposal:

• vertex constraint - A vertex constraint, (a,v,t) restricts
agent a from being at vertex or grid v at timestep t.

• edge constraint - An edge constraint, (a,(v1,v2),t) re-
stricts agent a from moving between vertex v1 to v2 be-
tween timesteps t - 1 to t.

We introduce a few more constraints for better path effi-
ciency:

• turning constraint (tc) - Used to constrain the turns of a
vessel. A turning constraint or tc ,(a,v1,v2,v3,t), restricts
agent a from ever making a transition from grid v2 to
v3 given that it has moved from grid v1 to v2 between
timesteps t− 1 and t.

• waiting constraint 1 (wc1) - The waiting constraint 1 or
wc1 ,(a,v1,v2,t), restricts agent a from moving between
vertex v1 and v2 between timesteps t - 1 to t given that
the agent had x(a, t− 2) = v1, that is the agent had been
waiting v1.

• waiting constraint 2 (wc2) - The wc2 ,(a, t, v1, v2) re-

stricts agent a from including vt1ṽ
t+1
2 vt

′

2 within Ta, that
is the agent is not allowed to wait at v1 and move to v2
given that it arrived at v1 at timestep t.

Note that secondary vertex conflicts & secondary edge
conflicts are nothing but mathematically defined violations
of the Crossing Situation & Head On Situation respectively.
The procedures for resolving edge and vertex conflicts re-
main the same as Conflict-Based Search within our strategy
as shown within the algorithm. Let us assume that all the vi-
olations occur at timestep t within the shown figures. Figure
(7) shows a secondary vertex conflict, that is, (R,B′, vred, t)
where for some node N , that contains the set of trajectories
containing the conflict, we have:

vtred ⊆ Tb & vtred ⊆ Ta and R ℵ B at t - 1 (25)
xN (R, t− 1) = vyellow & xN (B, t− 1) = vgreen & (26)

xN (B, t− 2) = vpink (27)
̸ xN (B, t− 2)cxN (B, t− 1)cxN (B, t)c = 120◦ (28)

Now, there are not two but three ways for preventing this
conflict, either we constrain B which ensures that if,

xN (B, t−2) = vpink & xN (B, t−1) = vgreen then, (29)

x′N (B, t) ̸= vred (30)

This is done using a turning constraint or (B, xN (B, t −
2), xN (B, t−1), xN (B, t), t−1) on B. The other way is to
simply constrain the edge movement of B to ensure -

xN (B, t− 2) = vpink =⇒ xN (B, t− 1) ̸= vgreen (31)

by applying the edge constraint (B, (vpink, vgreen), t − 1).
Third way is to apply an edge constraint, (R, (xN (R, t −
1), vred), t) on R. Note that if we replace equation (31) by,

ṽtred ⊆ Tb & vtred ⊆ Ta and R ℵ B at t - 1 (32)

Algorithm 1: COLREG-CBS Algorithm
Colregs-Compliant MAPF instance
Optimum Set of Non-conflicting paths

0: Root.constraints← 0

0: Root.solution← Find individual paths using the low-level search
0: Root.cost← Sum of the costs of individual paths
0: Insert Root into OPEN
0: while OPEN is not empty do
0: P ← Best node from OPEN (lowest solution cost)
0: Search the paths in P for a conflict
0: if No conflict found then return P.solution

0: end if
0: Q← First conflict in P at timestep t between agents ai and aj

0: if Q = (ai, aj , v, t) (Vertex Conflict) then
0: Constraints← {(ai, v, t), (aj , v, t)}
0: else if Q = (ai, aj , v1, v2, t) (Edge Conflict) then
0: Constraints← {(ai, (v1, v2), t), (aj , (v2, v1), t)}
0: else if Q = (ai, a

′
j , v1, t) (Secondary Vertex Conflict) then

0: if xP (aj , t− 1) ̸= xP (aj , t) then
0: Constraints ← {(aj , xP (aj , t − 2), xP (aj , t −

1), xP (aj , t), t− 1)}
0: else
0: Constraints← {(aj , xP (aj , t− 2), xP (aj , t− 1), SP (aj , t−

1), t− 1)}
0: end if
0: Add (ai, (xP (ai, t− 1), v1), t) to Constraints
0: else if Q = (a′

i, aj , v1, v2, t) (Secondary Edge Conflict) then
0: Constraints← {(ai, xP (ai, t− 2), v1, xP (ai, t), t− 1)}
0: if xP (aj , t− 2) = xP (aj , t− 1) = v2 then
0: Add (aj , v2, v1, t) to Constraints
0: else
0: Add (aj , xP (aj , t− 2), v2, v1, t− 1) to Constraints
0: end if
0: else if Q = (a′

i, a
′
j , v1, v2, t) (Secondary Edge Conflict) then

0: Constraints← {(ai, xP (ai, t− 2), v1, xP (ai, t), t− 1)}
0: Add (aj , xP (aj , t− 2), v2, xP (aj , t), t− 1) to Constraints
0: end if
0: for each q in Constraints do
0: A← A new node
0: A.constraints← P.constraints + q

0: A.solution← P.solution

0: a← Agent constrained using q

0: Use low-level to find path for a
0: if Path Found then
0: Update A.solution

0: A.cost← Sum of path costs for all agents
0: else
0: Continue
0: end if
0: end for
0: end while=0

, that is, B waits to let R cross vred and then itself
moves to vred. Note that this is also a violation of the
Colregs Crossing Rule as mentioned in equation (15) &
(??). This conflict can be dealt in a manner exactly same
as we dealt with the prior secondary vertex conflict. Note
that unlike other conflicts, which require the creation of two
high-level CBS nodes. A conflict whose resolution requires
constraining a turn of one of the vessels would lead to the
creation of three high-level CBS nodes.

Figure (8) shows a secondary edge conflict , that is,,
(R′, B, vgreen, vyellow, t):

vt−1yellowvgreen
t ⊆ TB (33)

vt−1greenvyellow
t ⊆ TR & vtgreen ̸⊆ TR (34)

̸ xN (B, t− 2)cxN (B, t− 1)cxN (B, t)c = 0◦ (35)

A similar conflict is also shown in Figure (13) with the
only difference being that over there, R makes a sharp turn.
Since, the turn of R is what creates the conflict in the first
place, we constrain this turn of R. The constraint on B de-
pends on the fact whether xN (B, t − 2) ̸= xN (B, t − 1)
, that is, the condition in equation (18) holds or not. If the
condition holds, then we will have to subject B to a turning
constraint ,(B, xN (B, t−2), xN (B, t−1), xN (B, t), t−1),
otherwise a waiting constraint , that is, (B, xN (B, t −
1), xN (B, t), t) is sufficient. In figure (9) (right side), we
see another secondary edge conflict , that is, created by the
imaginary trajectories of both the vessels with each actually,
turning towards their respective port sides such that:

vt−1yellowv
t
green ⊆ TR (36)

vt−1greenv
t
yellow ⊆ TB (37)

and both the vessels take a 60◦ turn which is a necessary
condition according to equations (23) & (24). The turns of
the vessels are constrained leading to the creation of 4 high-
level nodes.

Experimental Results
Simulation Results
For simulations, we tested the algorithm over 100 problem
instances for n number of agents where n ∈ {3, 5, 10, 15} on
a hexagonal mesh containing 99 grids. We used a single core
of an Apple M1 processor as our computational resource.
A time of 5 minutes was given for solving each instance.
Exceeding the time limit for solving an instance implies that
an algorithm failed to solve that instance. We introduce a
quantity called optimality rate , Or , where for a solvable
instance m involving N agents -

Or =

N∑
k=1

Ik

Sm
, (38)

where, Ik is the optimal path for the kth agent returned by
the low level solver when the kth agent is under no con-
straint. Sm is the total path cost of the solution returned by

the algorithm. It can be observed that closer the Or is to 1,
the better is the quality of the returned path. For each n, 100
simulations were carried out and the success rate is equal
to the number of instances that were solved out of 100. The
mean time for n is the mean of the time taken ,in seconds,
to solve all the 100 problem instances. Fig. (15) & Table (1)
display the results for the computer simulations. It can be
observed that as n increases, the success rate decreases and
mean time increases.

Table 1: Results for Computer Simulations

n Mean Time (s) Success Rate O r Mean O r (Std. dev.)

3 0.0432 1.00 0.9954 0.0135
5 0.0996 0.99 0.9909 0.0164

10 2.7074 0.99 0.9963 0.0056
15 8.9772 0.98 0.9965 0.0044

Physical Experimental Results

We evaluate COLREG-CBS through experimental demon-
stration on two ASVs. The experiment was carried out in a
Lake.

ASVs Our in-house developed ASVs named ”Beluga”
(green-colored) and ”Marlin” (red-colored) as shown in Fig-
ure 16 are identical single hull kayaks of length 2250mm
made from plastic. The width of the vessels is 870 mm and
the hull weight is 15kg with a payload capacity of 100kg.
The vehicles are equipped with two T200 thrusters that func-
tion as a differential drive mechanism with a maximum com-
bined thrust of 100 Newtons. They have a Pixhawk 2.4.8
autopilot with ArduRover firmware using a NEO 7M GPS
module. We built an external frame using 4040 aluminum
extrusions weighing about 8kg to mount the various com-
ponents on the vessels. These components together add ap-
proximately 10kg to the payload. The maximum speed of
each vessel is 5 knots. The resultant solution generated by
the COLREG-CBS strategy is converted to GPS coordinates
and communicated to respective ASV’s Pixhawk autopilot
from the ground station using 433 MHz radio telemetry.

Experiment . We considered an area of 40m × 40m in
the lake. The area is divided into hexagonal mesh compris-
ing 99 hexagons. The scenario of a head-on collision of two
ASVs is considered in the experiment. The resultant solution
generated by the COLREG-CBS strategy is shown in Figure
19. Initially, the vessels are located at their respective start
location and move towards their goal location. The solution
generated is converted to GPS waypoints and communicated
to the vessels through the ground station. The vessels fol-
low the set of GPS waypoints to resolve conflicts as shown
in Figure 18. We have shown through simulations and real-
world experiment that the COLREG-CBS technique can ef-
fectively produce conflict-free paths that satisfy COLREG
standards for ASVs.

Figure 15: The effect of increasing the number of agents on
Success Rate, Optimality Rate (Mean and Standard Devia-
tion) and Mean Time (in seconds).

Figure 16: ASVs used for the experiment

Figure 17: Trajectories generated by the Colregs-Compliant
CBS algorithm for a 14 agent MAPF problem.

Figure 18: The actual
GPS trajectories fol-
lowed by the ASVs in
the experiment.

Figure 19: Computer
simulation displaying
the waypoints generated
for a problem instance
involving two agents.

Conclusions
This paper presents a CBS inspired path-planning strategy
for ASVs that adhere to the COLREGs requirement for ma-
rine vehicles. We introduce the algorithms and demonstrate
their application through both simulations and real-world
experiments involving two ASVs. The results from these
simulations and experiments confirm the effectiveness of the
COLREG-CBS strategy in practical situations.

The current work can be extended by investigating the
theoretical properties of the CBS strategy and analyzing the
impact of communication delays on the solution process.
Another extension could involve incorporating environmen-
tal factors such as currents and winds when calculating op-
timal paths. Additionally, the efficiency of the proposed ap-
proach should be compared with existing methods. The al-
gorithm can be extended for decentralized implementation.

Acknowledgment
We thank the staff of Bhopal Lower Lake boating club for al-
lowing us to use their facility for the experiments. We would
also like to thank all the other students at MOONLAB, In-
dian Institute of Science Education and Research Bhopal for
their help and guidance.

References
Benjamin, M. R. 2002. Multi-objective autonomous vehi-
cle navigation in the presence of cooperative and adversar-
ial moving contacts. In OCEANS’02 MTS/IEEE, volume 3,
1878–1885. IEEE.
Chiang, H.-T. L.; and Tapia, L. 2018. COLREG-RRT: An
RRT-Based COLREGS-Compliant Motion Planner for Sur-
face Vehicle Navigation. IEEE Robotics and Automation
Letters, 3(3): 2024–2031.
Hu, L.; Hu, H.; Naeem, W.; and Wang, Z. 2022. A review on
COLREGs-compliant navigation of autonomous surface ve-
hicles: From traditional to learning-based approaches. Jour-
nal of Automation and Intelligence, 1(1): 100003.
Lyu, H.; and Yin, Y. 2019. COLREGS-Constrained Real-
time Path Planning for Autonomous Ships Using Modified
Artificial Potential Fields. Journal of Navigation, 72(3):
588–608.

Naeem, W.; Irwin, G. W.; and Yang, A. 2012. COLREGs-
based collision avoidance strategies for unmanned surface
vehicles. Mechatronics, 22(6): 669–678. Special Issue on
Intelligent Mechatronics (LSMS2010 & ICSEE2010).
Shan, T.; Wang, W.; Englot, B.; Ratti, C.; and Rus, D.
2020. A Receding Horizon Multi-Objective Planner for Au-
tonomous Surface Vehicles in Urban Waterways. In 2020
59th IEEE Conference on Decision and Control (CDC),
4085–4092.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Vagale, A.; Oucheikh, R.; Bye, R.; Osen, O.; and Fossen, T.
2021. Path planning and collision avoidance for autonomous
surface vehicles I: a review. Journal of Marine Science and
Technology, 26.
Wang, N.; and Xu, H. 2020. Dynamics-Constrained Global-
Local Hybrid Path Planning of an Autonomous Surface Ve-
hicle. IEEE Transactions on Vehicular Technology, 69(7):
6928–6942.
Wei, G.; and Kuo, W. 2022. COLREGs-Compliant Multi-
Ship Collision Avoidance Based on Multi-Agent Reinforce-
ment Learning Technique. Journal of Marine Science and
Engineering, 10(10).
Wen, N.; Long, Y.; Zhang, R.; Liu, G.; Wan, W.; and Jiao, D.
2023. COLREGs-Based Path Planning for USVs Using the
Deep Reinforcement Learning Strategy. Journal of Marine
Science and Engineering, 11(12).
Zhao, Y.-x.; Li, W.; Feng, S.; Ochieng, W. Y.; Schuster, W.;
et al. 2014. An improved differential evolution algorithm
for maritime collision avoidance route planning. In Abstract
and Applied Analysis, volume 2014. Hindawi.

	Introduction
	Related Work
	Conflict-Based Search
	Action Space
	Path Finding for Individual agents
	A*, heuristics and penalties
	Penalizing the agent for waiting

	COLREGs-COMPLIANT BEHAVIOR ON GRIDS
	Colregs-Compliant Conflict-based search
	Experimental Results
	Simulation Results
	Physical Experimental Results

	Conclusions
	Acknowledgment

