
A Quality Diversity Approach to Automatically Generate
Multi-Agent Path Finding Benchmark Maps

Cheng Qian1*, Yulun Zhang1*, Varun Bhatt2, Matthew C. Fontaine2,
Stefanos Nikolaidis2, Jiaoyang Li1

1Robotics Institute, Carnegie Mellon University
2Thomas Lord Department of Computer Science, University of Southern California

chengqia@andrew.cmu.edu, yulunzhang@cmu.edu,{mfontain,vsbhatt,nikolaid}@usc.edu, jiaoyangli@cmu.edu

Abstract

We use the Quality Diversity (QD) algorithm with Neural
Cellular Automata (NCA) to generate benchmark maps for
Multi-Agent Path Finding (MAPF) algorithms. Previously,
MAPF algorithms are tested using fixed, human-designed
benchmark maps. However, such fixed benchmark maps have
several problems. First, these maps may not cover all the
potential failure scenarios for the algorithms. Second, when
comparing different algorithms, fixed benchmark maps may
introduce bias leading to unfair comparisons between algo-
rithms. Third, since researchers test new algorithms on a
small set of fixed benchmark maps, the design of the algo-
rithms may overfit to the small set of maps. In this work, we
take advantage of the QD algorithm to (1) generate maps with
patterns to comprehensively understand the performance of
MAPF algorithms, (2) be able to make fair comparisons be-
tween two MAPF algorithms, providing further information
on the selection between two algorithms and on the design of
the algorithms. Empirically, we employ this technique to gen-
erate diverse benchmark maps to evaluate and compare the
behavior of different types of MAPF algorithms, including
search-based, priority-based, rule-based, and learning-based
algorithms. Through both single-algorithm experiments and
comparisons between algorithms, we identify patterns where
each algorithm excels and detect disparities in runtime or suc-
cess rates between different algorithms.

1 Introduction
We study the problem of generating diverse and targeted
benchmark maps for Multi-Agent Path Finding (MAPF) al-
gorithms. Given a map and a group of agents, MAPF is
the problem of finding collision-free paths from their start
to goal locations. MAPF has wide applications in coor-
dinating hundreds of robots in automated warehouses (Li
et al. 2021b; Varambally, Li, and Koenig 2022; Zhang et al.
2023a,b), moving characters in video games (Ma et al. 2017;
Jansen and Sturtevant 2008), managing drone traffic (Ho
et al. 2022; Choudhury et al. 2022), and controlling multi-
robotic arms (Shaoul et al. 2024).

Given the wide applicability of MAPF, many algorithms
are proposed to solve MAPF, and benchmarking these al-
gorithms becomes an important task. Stern et al. (2019)
have proposed a set of 33 MAPF benchmark maps, cover-

*These authors contributed equally.

ing a diverse spectrum of map sizes, layouts, and difficul-
ties.1 These human-designed maps are widely used to test
newly proposed MAPF algorithms (Li, Ruml, and Koenig
2021; Li et al. 2021a; Okumura et al. 2019; Skrynnik et al.
2024). However, such benchmark maps have several prob-
lems. First, they may not fully encompass the failure modes
of an algorithm. Second, with a small fixed set of maps, it
is challenging to sufficiently understand the pros and cons
of different algorithms in different maps. Third, while com-
paring multiple algorithms, researchers are prone to run ex-
periments on a subset of maps that are biased towards the
proposed algorithms, resulting in an unfair comparison.

Meanwhile, Quality Diversity (QD) algorithms have been
used to generate a diverse set of high-quality solutions by
optimizing a given objective function and a set of diver-
sity measure functions. A recent work (Zhang et al. 2023b)
has used QD algorithms to optimize layouts for automated
warehouses. To ensure that the optimized layouts possess
human-explainable and regularized patterns, a follow-up
work (Zhang et al. 2023a) then leverages Neural Cellular
Automata (NCA) to generate the layouts, while applying QD
algorithms to optimize the parameters of the NCA. Cellular
Automata (Gardner 1970) iteratively generates complex tile-
based structures from a simple one through local interaction
between tiles. Each tile decides its next state based on its
neighbors via a fixed rule. Neural Cellular Automata (NCA)
represents the rule using a convolutional neural network.

In this paper, we adapt the layout optimization approach
based on the QD algorithm and NCA from the previous
work (Zhang et al. 2023a) and use it with an alternative
goal of generating diverse benchmark maps for MAPF al-
gorithms. To demonstrate that our approach can generate
benchmark maps for a broad spectrum of MAPF algo-
rithms, we choose five algorithms, namely CBS (Sharon
et al. 2015), EECBS (Li, Ruml, and Koenig 2021), PBS (Ma
et al. 2019), PIBT (Okumura et al. 2019), and Learn-to-
Follow (LTF) (Skrynnik et al. 2024), representing search-
based, priority-based, rule-based, and learning-based algo-
rithms, respectively.

We first generate benchmark maps for each algorithm in-
dividually, presenting diverse maps that are easy or challeng-
ing for each algorithm to solve. We summarize the design

1https://movingai.com/benchmarks/mapf/index.html

principles of benchmark maps that target each algorithm. We
then generate benchmark maps that automatically compare
two MAPF algorithms by generating maps that are easy for
one algorithm and hard for the other. We aim to understand
in which maps one algorithm outperforms the other in terms
of either runtime or success rate.

We make the following contributions: (1) we adapt the
layout optimization approach based on QD algorithms,
proposing a framework to generate diverse MAPF bench-
mark maps, (2) we apply our framework on five represen-
tative MAPF algorithms of different categories, generating
novel benchmark maps and providing new insights about
their performance on maps of different patterns, and (3)
we give guidelines for future researchers on how to better
benchmark MAPF algorithms.

2 Preliminaries
2.1 Multi-Agent Path Finding (MAPF)
Definition 1 (Map) A map is a four-neighbored 2D grid,
where each tile can either be an empty space or an obsta-
cle. A map is valid if all empty spaces are connected.
Definition 2 (MAPF) Given a valid map and a set of agents
with their start and goal locations, MAPF aims to find
collision-free paths from their start to goal locations. Agents
can either move to their adjacent vertices or stay at their
current vertices at each timestep. Two agents collide if they
are at the same vertex or swap vertices at the same timestep.
The objective of MAPF is minimizing the sum-of-cost, de-
fined as the sum of path lengths of all agents.

We present a short summary of existing MAPF algorithms
and the chosen algorithms for experiments in this paper.
Search-Based. This category includes exponential-time al-
gorithms that exhaustively explore the solution space of
MAPF. They usually have theoretical guarantees such as op-
timality and suboptimality, but suffer from computational
time. Examples include M∗ (Wagner and Choset 2011,
2015), BCP (Lam et al. 2019), ICTS (Sharon et al. 2013),
CBS (Sharon et al. 2015; Gange, Harabor, and Stuckey
2019; Li et al. 2020), ECBS (Barer et al. 2014) and
EECBS (Li, Ruml, and Koenig 2021). We choose CBS and
EECBS as the representatives of this category. CBS starts
by planning a shortest path for each agent, ignoring the col-
lisions, and then resolving the collisions with a two-level
search. The high-level search iteratively selects unresolved
collisions and adds constraints to tackle them. The low-level
search runs single-agent planning to compute new paths that
satisfy the constraints. The search continues until all col-
lisions are resolved. EECBS is a variant of CBS that uses
Explicit Estimation Search (Thayer and Ruml 2011) on the
high level and focal search (Pearl and Kim 1982) on the low
level.
Priority-Based. Priority-based algorithms plan paths for
each agent in a sequence, forcing agents with low priority
to avoid colliding with those with high priority. The priority
planning (PP) (Erdmann and Lozano-Pérez 1987) algorithm
plans paths for agents in a pre-defined priority order. Monte-
Carlo PP (Friedrich et al. 2024) pre-defines a set of ran-
domized priority orders and selects the paths with the best

solutions. PBS (Ma et al. 2019) combines CBS with PP to
explicitly search for a good priority order with a two-level
search. The high-level search of PBS is similar to CBS ex-
cept that PBS constrains one agent to have a higher priority
order than the other. The low-level search then plans paths
with the order from the high-level search. We choose PBS
as the representative of this category.
Rule-Based. Rule-based algorithms (Wang and Botea 2011;
Okumura 2023) leverage pre-defined rules to move agents to
their goals. They usually run much faster but produce worse
solutions than search-based and priority-based methods. We
choose PIBT (Okumura et al. 2019) as the representative
of this category. PIBT uses an iterative one-timestep rule
to move the agents. At each timestep, each agent plans a
single-step action towards its goal. In case of collision, a pre-
defined rule based on priority inheritance and backtracking
is applied to resolve the collision.
Learning-Based. Learning-based algorithms usually for-
mulate MAPF as a Multi-Agent Reinforcement Learning
(MARL) (Sartoretti et al. 2019; Damani et al. 2021) prob-
lem. They train a shared policy for each agent, taking its
local field of view as input and deciding its next action. We
choose Learn to Follow (LTF) (Skrynnik et al. 2024) as the
representative of this category. LTF starts by searching for
a guide path for each agent without considering collisions.
Then it uses a shared learnable policy to move the agents to
their goals along the guide paths while avoiding collisions.
LTF is developed for lifelong MAPF, a variant of MAPF
that constantly assigns new goals to agents. We modify it
for MAPF by asking agents to stop when they reach their
first goals.

2.2 MAPF Benchmarks

Early works in MAPF typically use randomly generated
benchmark maps (Wagner and Choset 2015) or maps from
the single-agent path planning benchmark set (Sturtevant
2012). Stern et al. (2019) established the major set of MAPF
benchmark maps with 33 maps of five categories (game,
maze, empty, random, and room) and map sizes ranging
from 32 × 32 to 256 × 256. This benchmark set is used
extensively in MAPF research (Okumura et al. 2019; Li
et al. 2021a; Okumura 2023; Friedrich et al. 2024). How-
ever, while testing novel MAPF algorithms, instead of using
all maps, researchers usually select a subset of them of dif-
ferent categories and sizes. This could result in unfair and bi-
ased benchmarking results because they can intentionally or
unintentionally cherry-pick maps that favor their proposed
algorithms, or the design of their algorithms could overfit to
the selected maps.

The MARL community usually generates random maps to
test the trained policy for MAPF problems (Sartoretti et al.
2019; Damani et al. 2021). Researchers who develop MAPF
algorithms for the multi-robot systems for automated ware-
houses or sortation centers often use a set of warehouse
maps (Li et al. 2021b; Varambally, Li, and Koenig 2022;
Zhang et al. 2023b,a, 2024).

2.3 Quality Diversity (QD) Algorithms
QD algorithms (Cully et al. 2015; Lehman and Stanley
2011a,b) are inspired by evolutionary algorithms with di-
versity search to generate a diverse collection of high-
quality solutions by optimizing an objective function and
diversifying a set of diversity measure functions simultane-
ously. QD algorithms maintain an archive, which is a tes-
sellated measure space defined by the measure functions.
The archive stores the best solution in each tessellated cell.
QD algorithms then optimize the sum of objective val-
ues of all solutions in the archive, defined as QD-score.
We choose Covariance Matrix Adaptation MAP-Annealing
(CMA-MAE) (Fontaine and Nikolaidis 2023) as the method
for generating benchmark maps because it is the state-of-
the-art QD algorithm specialized for continuous search do-
mains. CMA-MAE is an extension of MAP-Elites (Mouret
and Clune 2015) that incorporates the covariance matrix
adaptation mechanism of CMA-ES (Hansen 2016), which is
a derivative-free single-objective optimizer. CMA-ES main-
tains a multi-variate Gaussian distribution and iteratively
samples from it for new solutions. It evaluates the solu-
tions and updates the Gaussian toward high-objective re-
gions. CMA-MAE adapts this mechanism to optimize the
QD-score.

2.4 Automatic Scenario Generation
Automated methods of generating scenarios to understand,
test, or benchmark a given algorithm have been proposed
by different fields. In autonomous driving, researchers have
generated scenarios to test and evaluate developed au-
tonomous driving systems (Arnold and Alexander 2013;
Abeysirigoonawardena, Shkurti, and Dudek 2019; Mullins
et al. 2018). In human-robot-interaction, prior works have
used QD algorithms to generate shared autonomy sce-
narios (Fontaine et al. 2021b) or diverse kitchen lay-
outs (Fontaine et al. 2021a) to understand the coordina-
tion behavior between humans and robots. A follow-up
work (Bhatt et al. 2023) leverages model-based QD meth-
ods (Bhatt et al. 2022; Zhang et al. 2022) to improve the
sample efficiency of QD algorithms. In reinforcement learn-
ing, prior works have generated maps to benchmark (Cobbe
et al. 2020) or continuously improve (Wang et al. 2019,
2020) trained agent.

In MAPF, one recent work (Ren et al. 2024) has used QD
to generate maps for MAPF. Our work differs in two key
aspects: First, they focus on generating maps of fixed diffi-
culties, quantified by an approximate metric based on map
connectivity, while we are interested in generating bench-
marking maps targeted for specific MAPF algorithms. Sec-
ond, they directly optimize tile types (i.e., whether it is an
empty space or an obstacle) using MAP-Elites, while we
optimize a map generator based on NCA, which has been
shown to be more effective for generating maps with diverse
regularized patterns (Zhang et al. 2023a).

3 Benchmark Generation Approach
We adapt the previous work (Zhang et al. 2023a) to use
CMA-MAE and NCA to generate diverse benchmark maps

Run MAPF algorithm(s)Update archive

Repair the map
with MILP

Form NCA generator and
generate the map

Update

Sample

...

Figure 1: Overview of our approach of using CMA-MAE to
optimize NCAs to generate diverse benchmark maps.

with the objective and measures computed by running
MAPF algorithms. Figure 1 shows the overview of the
method. Starting by sampling b parameter vectors θ, we
form b NCA generators and use them to generate b maps.
Maps generated by NCA might not be valid. We then adapt
a mixed integer linear programming (MILP) solver (Zhang
et al. 2020, 2023a,b) to repair the map such that (1) the map
is valid, and (2) the number of obstacles falls in a pre-defined
range [Olb, Oub]. We then run MAPF algorithms to evaluate
the objective and measure values and add the evaluated maps
to an archive. For each evaluation, we run the given MAPF
algorithm in Ne instances. Finally, we update the Gaussian
distribution, starting a new iteration. We repeat this process
until we evaluate Neval maps.

MAPF Instance. In this paper, we focus on generating
MAPF benchmark maps of a pre-defined size and number
of agents. To generate a MAPF instance based on a map,
we follow the bucket method (Stern et al. 2019) to gener-
ate evenly distributed start and goal locations of the agents
with a distance constraint, which was used for generating the
“even” scenarios in the MAPF benchmark. For each map, we
generate Ne MAPF instances with different starts and goals,
run MAPF algorithms on each instance, and compute the av-
erage objective and measures of all instances as the objective
and measures of the map.

Framework Realization. Our proposed framework is flex-
ible on a high level. It is capable of generating a diverse set
of high-quality MAPF benchmark maps tailored to differ-
ent MAPF algorithms by carefully designing objective and
diversity measures. In this section, we propose two concrete
realizations of our framework that are useful for benchmark-
ing MAPF algorithms by designing objectives and measures.
We first provide an one-algorithm realization, intending to
generate diverse and difficult benchmark maps targeted for
five representative MAPF algorithms. We then provide a
two-algorithm realization, aiming to generate maps that are
easy for one algorithm and hard for the other. We highlight
that other realizations, such as generating easy maps or com-
paring more than two algorithms, are possible.

3.1 Objective
In all experiments, our objective is a function f : X → R,
where X is the space of all maps. The function f runs one
or two MAPF algorithms on Ne different MAPF instances
with Na agents. For CBS, EECBS, and PBS, we set a time
limit T for each run. For PIBT and LTF, we set a maximum
makespan M .
One-Algorithm Experiments. We intend to generate maps
that are challenging for the MAPF algorithms in one-
algorithm experiments. The objective quantifies the empir-
ical hardness of a map x ∈ X to a MAPF algorithm ϕ ∈ A,
where A = {CBS, EECBS, PBS, PIBT, LTF} is all MAPF
algorithms considered in the experiments.

For CBS, EECBS and PBS, we maximize their CPU run-
time because they are exponential-time algorithms with the
major limitation being frequently running out of time. We
do not consider the solution quality as the objective because
CBS and EECBS are proven to be optimal and bounded-
suboptimal algorithms. PBS, while being unbounded subop-
timal, empirically finds close-to-optimal solutions. For ex-
ample, Ma et al. (2019) shows that PBS finds solutions never
over 4% worse than optimal in fixed game maps. Therefore,
we maximize the CPU runtime to find failure cases for CBS,
EECBS, and PBS. Concretely, suppose the function tϕ :
X → R>0 computes the average CPU runtime by running
ϕ ∈ A in Ne instances, the objective f for the one-algorithm
experiments is f(x) = tϕ(x), ϕ ∈ {CBS, EECBS, PBS}.
If the algorithms fail to return solutions within the timelimit
T , we set the CPU runtime as T .

PIBT and LTF, on the other hand, suffer mainly from
deadlocks, meaning that some agents might never reach their
goals. Therefore, to find failure cases, we minimize the Reg-
ularized Success Rate (RSR), defined as follows:

RSRϕ(x) =

{
SRϕ(x) if SR < 1

SRϕ(x) · C − SoCϕ(x) if SR = 1
(1)

SRϕ : X → R>0 computes the success rate of running
algorithm ϕ on one MAPF instance of a map, which is com-
puted as the percentage of agents that successfully reach
their goals within the given makespan M . SoCϕ : X →
R>0 computes the sum-of-cost of the solution if SR = 1. C
is a large constant making sure that the RSR score of maps
with SR = 1 always dominates that of maps with SR < 1.
Intuitively, if not all agents reach their goals (SR < 1), we
maximize the success rate. If all agents reach their goals
(SR = 1), we regularize the success rate with the sum-
of-cost to quantify the quality of the solution. Let the func-
tion rϕ : X → R>0 return the average regularized success
rate by running algorithm ϕ in Ne MAPF instances. Con-
cretely, rϕ(x) =

∑Ne

i=1 RSR
(i)
ϕ (x), where i denotes the i-th

run of algorithm ϕ. Then the objective of PIBT and LTF are
f(x) = rPIBT(x) and f(x) = rLTF(x), respectively. We do
not consider runtime as the objective of PIBT and LTF be-
cause they run very fast, making CPU runtime not a good
metric of their performance in a map.
Two-Algorithm Experiments. To compare two given
MAPF algorithms in two-algorithm experiments, we aim to
generate maps that maximize the performance gap between

the two algorithms. We consider two pairs of comparisons:
(1) EECBS vs. PBS, and (2) PIBT vs. LTF. We compare
EECBS and PBS because (1) both suboptimal algorithms
use a two-level search based on collision avoidance, (2) both
find near-optimal solutions empirically, and (3) few prior
works have compared them thoroughly. We compare PIBT
and LTF because (1) both use a pre-defined policy, either
rule-based or learned, to move the agents step by step to their
goals while avoiding collisions, (2) both run fast but suffer
from deadlocks, and (3) while the LTF work (Skrynnik et al.
2024) has compared them on warehouse maps, showing that
LTF outperforms PIBT, we want to find cases where PIBT
outperforms LTF.

To compare EECBS and PBS, we set the objective as the
absolute difference in the average CPU runtime. Concretely,
the objective of a generated map x ∈ X is computed as
f(x) = |tEECBS(x)− tPBS(x)|. Similarly, to compare PIBT
and LTF, we set the objective as the absolute difference in the
regularized success rate, i.e., f(x) = |rPIBT(x)− rLTF(x)|.

3.2 Diversity Measures

We aim to select diversity measures such that the generated
maps are diverse in terms of (1) general hardness towards
all algorithms to analyze whether the general hardness of a
map aligns with the hardness to a specific algorithm, and
(2) spatial arrangement of the obstacles to generate maps of
different patterns.
General Hardness. To measure the general hardness of a
map, the most commonly used metric is the number of ob-
stacles. The number of obstacles in a map affects the space
available to resolve collisions as well as the search space of
the algorithms. Therefore, diversifying it would give a range
of difficulties. We also consider two metrics that are pro-
posed specifically to reflect the hardness of a map: the stan-
dard deviation of Betweenness Centrality (std of BC) (Ew-
ing et al. 2022) and λ2 (Ren et al. 2024). To compute the std
of BC, we search for the shortest path between every pair
of empty spaces in the map and then calculate the standard
deviation of the usage of all empty spaces. The higher the
std of BC, the more congestion and the harder the MAPF
problem. To compute λ2 of a map, we view the map as a
graph G(V,E), and compute the second smallest eigenvalue
of the normalized Laplacian matrix of G. Ren et al. (2024)
shows empirically that λ2 is correlated with the hardness of
the map.
Spatial Arrangement. Aside from the hardness of the
maps, we want to diversify the spatial arrangement of the
maps, making the generated maps stylistically diverse. We
first consider the KL divergence of the tile pattern distribu-
tion (Fontaine et al. 2021b) between the tile pattern distri-
bution of the generated map and one category of fixed maps
selected from the MAPF benchmark (Stern et al. 2019). A
tile pattern is one possible arrangement of the obstacles and
empty spaces in a 3 × 3 grid. To compute the tile pattern
distribution of a map, we count the number of all possible
tile patterns in the map. We then compute the KL diver-
gence between the tile pattern distribution of the map and a

(a) One-entry space. (b) One-tile entry.

Figure 2: Examples of one-entry space and one-tile entry,
circled in red.

Figure 3: Archive for CBS with representative maps.

fixed distribution computed from all the maze maps2 of the
human-designed MAPF benchmark set (Stern et al. 2019).
The smaller the KL divergence of tile pattern distribution,
the more similar in local patterns our generated map is to
the selected set of benchmark maps. We choose maze maps
because they empirically yield the most complex patterns.
In addition, we consider the entropy of the tile pattern dis-
tribution (Zhang et al. 2023a). The lower the entropy, the
more regularized patterns the map possesses. Finally, we
consider the KL divergence of the Weisfeiler-Lehman (WL)
graph feature (Shervashidze et al. 2011) between the gen-
erated map and the maze maps. Similar to the tile pattern
distribution, a smaller KL divergence of the WL graph fea-
ture implies more similarities between the local patterns of
the generated map and the maze maps.

In our experiments, we choose the number of obstacles
and KL divergence of tile pattern distribution as the di-
versity measures. We empirically observe that, among the
measures considered, the number of obstacles is the most
correlated with the general hardness of the maps, and the
KL divergence of tile pattern distribution yields the most di-
verse map patterns. We justify our choice with experimental
results in Appendix A.

4 Benchmarking One Algorithm
For one-algorithm experiments, we intend to generate a di-
verse set of difficult benchmark maps targeted for five rep-
resentative algorithms we choose from Section 2.1, namely
CBS, EECBS, PBS, PIBT, and LTF.

2https://movingai.com/benchmarks/maze/index.html

4.1 Experiment Setup
Hyperparameters. Defining w as the suboptimality bound
away from the optimal solution, we use w = 1.5 for EECBS.
For CBS, we use the implementation of EECBS with w = 1.
We set T = 20 seconds for CBS, EECBS, and PBS, M =
1000 for PIBT, and M = 512 for LTF. For all algorithms,
we fix the map size as 32 × 32 and the number of agents
at 150. The pre-defined range for the number of obstacles is
[Olb = 307, Oub = 717], which corresponds to 30% to 70%
of the map size. For each evaluation, we run the given MAPF
algorithm in Ne = 5 different instances. For all algorithms,
we evaluated Neval = 10, 000 maps. For CBS, EECBS, and
PBS, we run evaluations with Na = 50 agents, and for PIBT
and LTF, we use Na = 150. We use more agents for PIBT
and LTF because they empirically have higher success rates
in congested MAPF instances.
Implementation. We implement CMA-MAE with
Pyribs (Tjanaka et al. 2023). For MAPF algorithms,
we use the open source implementations of CBS and
EECBS3, PBS4, PIBT5, and LTF6.
Compute Resources. We run our experiments on three ma-
chines: (1) a local machine equipped with a 64-core AMD
Ryzen Threadripper 3990X CPU and 192 GB of RAM,
(2) a local machine with a 64-core AMD Ryzen Thread-
ripper 7980X CPU and 128 GB of RAM, and (3) a high-
performance cluster featuring multiple 64-core AMD EPYC
7742 CPUs, each with 256 GB of RAM. All CPU runtimes
are measured on machine (1).

4.2 Results
We first define one-entry space and one-tile entry (shown
in Figure 2) as features of the benchmark maps. In Figures 3
to 5, the yellow cells indicate maps where the algorithm runs
out of time. The dark blue cells indicate maps where the
algorithm quickly finds a solution. In Figures 6 and 7, the
yellow cells indicate maps where the algorithm fails to plan
for any agents. The dark blue cells indicate maps where the
algorithm successfully plans for all agents. The colored tiles
in the representative maps display 10 out of 150 pairs of
start and goal locations. While we are primarily interested
in maps that are challenging for the algorithms, we also find
maps that are easy, as the by-product of the experiment. We
discuss more in Section 6.
CBS. Figure 3 shows the archive of maps for CBS. It is easy
to generate challenging maps for CBS. Map (a), Map (c),
and Map (d) show the most typical patterns where it is hard
for CBS to find optimal solutions. Map (a) and Map (c) con-
tain many long corridors, and Map (d) contains many one-
entry spaces with long corridors, where one-entry spaces
represent the empty space surrounded by three obstacles.
Figure 2a shows an example. By running CBS on Map (a)
and Map (b) in 200 MAPF instances, the success rate is be-
low 5% with an average runtime of over 18 seconds. The

3https://github.com/Jiaoyang-Li/EECBS
4https://github.com/Jiaoyang-Li/PBS
5https://github.com/Kei18/pibt2
6https://github.com/AIRI-Institute/learn-to-follow

Figure 4: Archive for EECBS with representative maps.

result shows that CBS performs poorly on maps with many
long corridors and one-entry spaces.

Some maps that CBS can solve are maps with fewer ob-
stacles and a large chunk of empty spaces. Map (b) is one of
these typical maps. Map (b) contains a large chunk of empty
spaces and short corridor components in between, providing
more space for agents to avoid collisions.
EECBS. Figure 4 shows the archive of maps for EECBS.
Compared to the archive of CBS, it is harder to generate
challenging maps for EECBS. Map (b) and Map (c) are hard
maps with typical patterns for EECBS. Map (b) contains a
large chunk of empty space, but with many long corridors
and one-tile entries. Map (c) contains many long corridors
and one-tile entries. EECBS runs out of time on both maps.
To further validate the results, we run EECBS with 200 dif-
ferent MAPF instances on these two maps. We get a success
rate of only 11% with an average CPU runtime of 16 sec-
onds, verifing that long corridors with one-tile entries are
challenging map patterns for EECBS to solve. On the other
hand, we observe that EECBS performs well in maps with
more empty spaces between each long obstacle component
and maps with short obstacle components, where obstacle
components refer to clusters of two or more obstacles. Map
(a) and Map (d) are two maps with typical patterns.

Map (a) contains many long obstacle components with
one-tile entries; however, the map has two or more columns
of empty space between each long obstacle component. Map
(d) contains many short obstacle components with many en-
tries in between, providing more space for agents to avoid
collision. Other maps where EECBS performs well are of
similar patterns or have a large chunk of empty spaces. With
more entry space, it is easier for EECBS to resolve col-
lisions. We show more maps with similar patterns in Ap-
pendix B to support our findings.
PBS. Figure 5 shows the archive of maps for PBS. We em-
pirically discover that PBS returns no solutions in many
maps. Therefore, as a side discovery, we show the maps in
which PBS returns no solution in at least one out of five
MAPF instances during the evaluation in the archive as pur-
ple cells.

Map (c) and Map (d) are hard maps with typical patterns

Figure 5: Archive for PBS with representative maps.

Figure 6: Archive for PIBT with representative maps.

for PBS. Map (c) contains many long corridors with one-tile
entries in between, and Map (d) contains many one-entry
spaces. PBS always reports no solution on Map (c) and runs
out of time on Map (d). Upon running 200 MAPF instances
on Map (c) and (d), PBS could hardly solve one instance in
Map (c) and always reports no solution. On Map (d), PBS
only achieves a success rate of 17.5% and an average run-
time of 19.1 seconds for successful instances, which vali-
dates our observation.

On the other hand, Map (a) and (b) show two typical pat-
terns where PBS performs well. Map (a) contains long cor-
ridors but with more entry spaces in between. Map (b) con-
tains many short obstacle components, providing more space
for agents to avoid collisions. To validate our observation
with long corridors, we run PBS in 200 MAPF instances
on Map (a). The results indicate that PBS achieves an 87%
success rate, with an average runtime of 3.4 seconds for suc-
cessful cases, which indicates that PBS can effectively solve
maps featuring long corridors with increased entry spaces in
between.
PIBT. Figure 6 shows the archive of maps of PIBT. The suc-
cess rate of PIBT decreases with an increased number of
obstacles and KL divergence. Similar to EECBS and CBS,
PIBT performs poorly in maps with long corridors, such as
Map (c). Running PIBT 200 in MAPF instances on Map
(c) resulted in an average success rate of 12%, validating

Figure 7: Archive for LTF with representative maps.

its poor performance. However, there are cases with large
number of obstacles and low KL divergence in that PIBT
has a high success rate. These maps share a common pat-
tern: large chunks of empty spaces with few corridors. Map
(a) is one such example. Running PIBT in 200 instances on
Map (a) results in an average success rate of 96%. By in-
specting the patterns in maps where PIBT has around a 50%
success rate, we observe that the most common patterns are
a combination of long corridors and one-entry spaces. Map
(d) is an example. Map (b), on the other hand, has many one-
entry spaces but fewer obstacles, achieving a success rate of
100%. Upon running PIBT in map (b) with 200 MAPF in-
stances, PIBT achieves an average success rate of 95%. This
result indicates that PIBT performs well when encountering
one-entry spaces with fewer obstacles. Overall, PIBT can
efficiently solve maps that include long corridors and one-
entry spaces if given sufficient space.
LTF. Figure 7 shows the archive of maps for LTF. Simi-
lar to PIBT, LTF performs worse with more obstacles and
higher KL divergence, as shown in Map (a). Similar to chal-
lenging maps for CBS, EECBS, and PIBT, Map (a) contains
long corridors, which increase the chance of congestion at
the entries. We use the manually designed maps with long
corridors, same as the maps tested with PBS, to further eval-
uate the performance of LTF. The result shows that with a
makespan of 512, the success rate for LTF is below 10%.
With fewer obstacles, LTF performs poorly on maps with
many one-entry spaces, such as Map (b) and Map (d). These
two maps contain different numbers of obstacles, but they
have similar patterns of one-entry spaces. Upon running LTF
in 200 instances on each map, we observe an average suc-
cess rate of 35%, revealing poor performance on maps with
this pattern. On the other hand, LTF performs better with
fewer obstacles. These maps possess large chunks of empty
spaces, exemplified in Map (c).

5 Comparing Two Algorithms
Given the different categories and properties of the MAPF
algorithms, hard maps for one algorithm might not be hard
for the other. Therefore, for two-algorithm experiments, we
aim to generate maps that are easy for one algorithm and
hard for the other by maximizing the performance gap be-
tween them.

Figure 8: Archive for EECBS vs PBS with representative
maps.

Figure 9: Archive for PIBT vs LTF with representative maps.

5.1 Experiment Setup
We run EECBS with w = 1.5. For EECBS and PBS, we
use T = 20 seconds. For PIBT and LTF, we use M = 512,
which is used to train the LTF policy (Skrynnik et al. 2024).
We use the same Olb, Oub, Ne, Neval, Na and map sizes
as the one-algorithm experiments. The implementation and
compute resources are specified in Section 4.1.

5.2 Results
We show the archives and representative benchmark maps in
Figures 8 and 9. To better visualize the comparisons of the
algorithms, we plot the differences, instead of the absolute
differences, between the CPU runtime or success rate of the
algorithms in each map. In Figure 8, the yellow cells repre-
sent tEECBS(x) − tPBS(x) ≥ 5 seconds, and the dark blue
cells represent tPBS(x) − tEECBS(x) ≥ 5 seconds. In Fig-
ure 9, the yellow cells represent SRPIBT(x) − SRLTF(x) ≥
30%, and the blue cells represent SRLTF(x)−SRPIBT(x) ≥
30%.
EECBS vs. PBS. Figure 8 shows the archive comparing
EECBS and PBS. In most cases, EECBS and PBS have sim-
ilar performances. However, we can identify their advanta-
geous ranges clearly at the upper right corner and bottom
left corner. Maps with more than 512 obstacles are usually
too hard for both algorithms. Therefore, it is hard to gener-
ate maps that have a large difference in CPU runtime. With

fewer than 400 obstacles, EECBS generally performs better
than PBS in two types of maps, exemplified in Map (a) and
(d). Map (a) is similar to Map (a) of Figure 4, with long but
wide corridors and one-entry spaces between adjacent corri-
dors. Map (d) shows a relatively random pattern with many
one-entry spaces. To validate the comparison, we run 200
MAPF instances in Map (a) and (d). In Map (a), EECBS
has a higher success rate (95.5%) than PBS (69.5%), and
a lower average runtime (4.3 seconds) than PBS (12.5 sec-
onds). Similarly, in Map (d), EECBS has a higher success
rate (100%) than PBS (77.5%), and a lower average runtime
(1.13 seconds) than PBS (7.4 seconds).

Map (b) and (c) are examples where PBS outperforms
EECBS. Notably, while Map (c) contains narrow long corri-
dors, both ends of the corridors are open, potentially making
PBS more easily resolve conflicts. Upon validating our re-
sults on 200 MAPF instances, in Map (b), PBS has a higher
success rate (96.5%) than EECBS (56.5%), and a lower av-
erage runtime (2.0 seconds) than EECBS (9.8 seconds). In
Map (c), PBS has a higher success rate (43%) than EECBS
(14.5%), and a lower average runtime (13.7) than EECBS
(18.3 seconds).

Our results serve as a more comprehensive comparison
between EECBS and PBS. Notably, only one work (Chan
et al. 2023) has systematically compared EECBS and PBS.
They conclude that EECBS outperforms PBS in five out of
six maps selected from the MAPF benchmark (Stern et al.
2019). In contrast, our results indicate that EECBS and PBS
exhibit similar behavior on most maps, with each having dis-
tinct advantages on different map patterns.

PIBT vs. LTF. Figure 9 shows the archive comparing PIBT
and LTF. In most cases with less than 50% of obstacles,
PIBT and LTF have a similar success rate. In maps with large
chunks of empty space such as Map (d), both PIBT and LTF
perform well. With the increase of obstacles over 50%, in
general, PIBT has a 5% to 10% higher success rate on aver-
age than LTF. In most cases, these maps contain many one-
entry spaces, such as Map (a). Upon running 200 instances
on Map (a) with PIBT and LTF, PIBT outperforms LTF by
an average success rate of 13%. The result aligns with our
observations in Section 4. PIBT has better performance in
maps with many one-entry spaces compared to LTF.

On the other hand, the archive also shows many cases
where LTF has a higher success rate than PIBT. These cases
are dispersed throughout the archive, with notable concen-
trations in the upper right and bottom left. Map (b) and (c)
in Figure 9 are the representative maps. Upon running 200
instances on both maps, LTF has an average of 20% higher
success rate on these maps compared to PIBT. By examin-
ing the patterns in these maps, we find that a slight increase
in the number of empty spaces between corridors can create
a significant gap in success rates between LTF and PIBT.

Our results provide additional comparisons between PIBT
and LTF to the experiments conducted by Skrynnik et al.
(2024), which conclude that LTF outperforms PIBT by com-
paring them on a set of human-designed warehouse maps.

6 Discussion and Conclusion
We propose a framework based on QD algorithms to gener-
ate diverse benchmark maps for MAPF algorithms. We pro-
vide two concrete realizations of the framework, presenting
experimental results with diverse benchmark maps of dif-
ferent levels of hardness and patterns. For the one-algorithm
experiments, we generate hard benchmark maps for five rep-
resentative MAPF algorithms by either maximizing the CPU
runtime or minimizing the regularized success rate. For the
two-algorithm experiments, we generate benchmark maps
that are hard for one algorithm and easy for the other.
When and How to Use the Proposed Framework. While
developing novel MAPF algorithms, researchers can use
our one-algorithm pipeline with their desired objective to
find maps their algorithm has difficulty solving. By gener-
ating such maps, they can have a better understanding of the
weaknesses of their algorithms. In addition, researchers can
leverage our two-algorithm pipeline to compare their pro-
posed algorithm with an existing algorithm. They can ob-
serve which kinds of maps their algorithm performs better
or worse than the existing algorithm. We argue that this is
a more systematic way of comparing two algorithms than
comparing them on a pre-defined set of fixed benchmark
maps because researchers might intentionally or uninten-
tionally cherry-pick maps that favor their algorithm or over-
fit the design of their algorithms to the selected set of maps.

Nevertheless, the one-algorithm and two-algorithm
pipelines are not the only realizations of our framework. Re-
searchers can tailor the framework for alternative purposes
by designing the objectives and diversity measures. For ex-
ample, researchers can minimize, instead of maximize, the
CPU runtime of CBS, EECBS, and PBS with a larger num-
ber of agents to generate a diverse collection of maps that are
easy, instead of hard, for these algorithms. While we present
some easy maps for each selected algorithm in Section 4,
they are by no means an exhaustive set. If easy maps are of
interest, researchers should use alternative objectives, such
as minimizing the CPU runtime or maximizing the success
rate. If researchers are interested in both hard and easy maps,
using the CPU runtime or regularized success rate as diver-
sity measures is a better choice.

Researchers can also generalize the two-algorithm
pipeline to an arbitrary number of MAPF algorithms to rank
the performance of more than two algorithms. In addition,
our framework focuses on generating MAPF benchmark
maps. Future research can explore generating diverse MAPF
instances by incorporating numbers of agents, map sizes, as
well as start and goal locations into the pipeline.
Computational Cost. Our proposed framework relies on
QD algorithms, which require a massive number of evalu-
ations in the generated benchmark maps to compute the ob-
jective and diversity measure values. Specifically, with our
one-algorithm experiment setup of Neval = 10, 000 evalua-
tions, each with Ne = 5 runs in different MAPF instances,
it takes 6 to 7 hours to generate benchmark maps for PIBT
and LTF, 10 hours for PBS, and more than 12 hours for CBS
and EECBS. The runtime is measured in machine (1) speci-
fied in Section 4.1. Future works can focus on reducing the
computational cost of QD algorithms to make the pipeline

more efficient. For example, prior works (Zhang et al. 2022;
Bhatt et al. 2022, 2023) have explored training a data-driven
surrogate model to assist the QD search. Meanwhile, we will
release our most representative generated benchmark maps
online. If the researchers’ new algorithm is built on one of
the algorithms we have tested, they can directly evaluate new
algorithms on our benchmark maps.

Acknowledgments
The research at Carnegie Mellon University was supported
by the National Science Foundation (NSF) under grant
number #2328671 and a gift from Amazon. The work
used Bridge-2 at Pittsburgh Supercomputing Center (PSC)
through allocation CIS220115 from the Advanced Cyber-
infrastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by NSF under grant
numbers #2138259, #2138286, #2138307, #2137603, and
#2138296. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies, or the U.S.
government. We also thank Daniel Harabor, Peter J. Stuckey,
Nathan Sturtevant, as well as reviewers at AAAI 2025 for
their valuable feedback on this paper.

References
Abeysirigoonawardena, Y.; Shkurti, F.; and Dudek, G. 2019.
Generating Adversarial Driving Scenarios in High-Fidelity
Simulators. In Proceedings of the International Conference
on Robotics and Automation (ICRA), 8271–8277.
Arnold, J.; and Alexander, R. 2013. Testing Autonomous
Robot Control Software Using Procedural Content Genera-
tion. In Proceedings of International Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP), 33–44.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal Variants of the Conflict-Based Search Algorithm for
the Multi-Agent Pathfinding Problem. In Proceedings of the
Annual Symposium on Combinatorial Search (SoCS), 19–
27.
Bhatt, V.; Nemlekar, H.; Fontaine, M. C.; Tjanaka, B.;
Zhang, H.; Hsu, Y.-C.; and Nikolaidis, S. 2023. Surrogate
Assisted Generation of Human-Robot Interaction Scenar-
ios. In Proceedings of the Conference of Robot Learning
(CoRL), 513–539.
Bhatt, V.; Tjanaka, B.; Fontaine, M.; and Nikolaidis, S.
2022. Deep Surrogate Assisted Generation of Environments.
In Proceedings of the Advances in Neural Information Pro-
cessing Systems (NeurIPS), 37762–37777.
Chan, S.-H.; Stern, R.; Felner, A.; and Koenig, S. 2023.
Greedy Priority-Based Search for Suboptimal Multi-Agent
Path Finding. In Proceedings of the Symposium on Combi-
natorial Search (SoCS), 11–19.
Choudhury, S.; Solovey, K.; Kochenderfer, M.; and Pavone,
M. 2022. Coordinated Multi-Agent Pathfinding for Drones
and Trucks over Road Networks. In Proceedings of the In-
ternational Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), 272–280.

Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2020.
Leveraging procedural generation to benchmark reinforce-
ment learning. In Proceedings of the International Confer-
ence on Machine Learning (ICML), 2048–2056.
Cully, A.; Clune, J.; Tarapore, D.; and Mouret, J.-B. 2015.
Robots that can adapt like animals. Nature, 521(7553): 503–
507.
Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021.
PRIMAL2: Pathfinding Via Reinforcement and Imitation
Multi-Agent Learning - Lifelong. IEEE Robotics and Au-
tomation Letters, 6(2): 2666–2673.
Erdmann, M. A.; and Lozano-Pérez, T. 1987. On Multiple
Moving Objects. Algorithmica, 2: 477–521.
Ewing, E.; Ren, J.; Kansara, D.; Sathiyanarayanan, V.; and
Ayanian, N. 2022. Betweenness Centrality in Multi-Agent
Path Finding. In Proceedings of the International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS), 400–408.
Fontaine, M.; and Nikolaidis, S. 2023. Covariance Matrix
Adaptation MAP-Annealing. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), 456–
465.
Fontaine, M. C.; Hsu, Y.-C.; Zhang, Y.; Tjanaka, B.; and
Nikolaidis, S. 2021a. On the Importance of Environments
in Human-Robot Coordination. In Proceedings of the
Robotics: Science and Systems (RSS).
Fontaine, M. C.; Liu, R.; Khalifa, A.; Modi, J.; Togelius, J.;
Hoover, A. K.; and Nikolaidis, S. 2021b. Illuminating Mario
Scenes in the Latent Space of a Generative Adversarial Net-
work. Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI), 5922–5930.
Friedrich, P.; Zhang, Y.; Curry, M.; Dierks, L.; McAleer, S.;
Li, J.; Sandholm, T.; and Seuken, S. 2024. Scalable Mech-
anism Design for Multi-Agent Path Finding. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence (IJCAI), 58–66.
Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implicit Conflict-Based Search Using Lazy Clause Gener-
ation. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 155–162.
Gardner, M. 1970. Mathematical Games – The Fantas-
tic Combinations of John Conway’s New Solitaire Game
“Life”. Scientific American, 223(4): 120–123.
Hansen, N. 2016. The CMA Evolution Strategy: A Tutorial.
ArXiv, abs/1604.00772.
Ho, F.; Gonçalves, A.; Rigault, B.; Geraldes, R.; Chicharo,
A.; Cavazza, M.; and Prendinger, H. 2022. Multi-Agent
Path Finding in Unmanned Aircraft System Traffic Manage-
ment With Scheduling and Speed Variation. IEEE Intelligent
Transportation Systems Magazine, 14(5): 8–21.
Jansen, M. R.; and Sturtevant, N. R. 2008. Direction Maps
for Cooperative Pathfinding. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 185–190.
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-Cut-and-Price for Multi-Agent Pathfinding. In

Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1289–1296.
Lehman, J.; and Stanley, K. O. 2011a. Abandoning Ob-
jectives: Evolution Through the Search for Novelty Alone.
Evolutionary Computation, 19(2): 189–223.
Lehman, J.; and Stanley, K. O. 2011b. Evolving a Diver-
sity of Virtual Creatures through Novelty Search and Local
Competition. In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO), 211–218.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021a. Anytime Multi-Agent Path Finding via Large Neigh-
borhood Search. In Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
4127–4135.
Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New Techniques for Pairwise Symmetry
Breaking in Multi-Agent Path Finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 193–201.
Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: A Bounded-
Suboptimal Search for Multi-Agent Path Finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 12353–12362.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021b. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 11272–11281.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 7643–7650.
Ma, H.; Yang, J.; Cohen, L.; Kumar, T. K. S.; and Koenig, S.
2017. Feasibility Study: Moving Non-Homogeneous Teams
in Congested Video Game Environments. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment (AIIDE), 270–272.
Mouret, J.-B.; and Clune, J. 2015. Illuminating Search
Spaces by Mapping Elites. ArXiv, abs/1504.04909.
Mullins, G. E.; Stankiewicz, P. G.; Hawthorne, R. C.; and
Gupta, S. K. 2018. Adaptive Generation of Challenging Sce-
narios for Testing and Evaluation of Autonomous Vehicles.
Journal of Systems and Software, 137: 197–215.
Okumura, K. 2023. LaCAM: Search-Based Algorithm for
Quick Multi-Agent Pathfinding. In Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), 11655–11662.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2019. Priority Inheritance with Backtracking for Iterative
Multi-agent Path Finding. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
535–542.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 4(4): 392–399.
Ren, J.; Ewing, E.; Kumar, T. K. S.; Koenig, S.; and Ayanian,
N. 2024. Map Connectivity and Empirical Hardness of Grid-
based Multi-Agent Pathfinding Problem. In Proceedings of

the International Conference on Automated Planning and
Scheduling (ICAPS), 484–488.
Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. K. S.;
Koenig, S.; and Choset, H. 2019. PRIMAL: Pathfinding via
Reinforcement and Imitation Multi-Agent Learning. IEEE
Robotics and Automation Letters, 4(3): 2378–2385.
Shaoul, Y.; Mishani, I.; Likhachev, M.; and Li, J. 2024. Ac-
celerating Search-Based Planning for Multi-Robot Manip-
ulation by Leveraging Online-Generated Experiences. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 523–531.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding. Artificial Intelligence, 195: 470–495.
Shervashidze, N.; Schweitzer, P.; van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
Lehman Graph Kernels. Journal of Machine Learning Re-
search, 12(77): 2539–2561.
Skrynnik, A.; Andreychuk, A.; Nesterova, M.; Yakovlev, K.;
and Panov, A. 2024. Learn to Follow: Decentralized Life-
long Multi-Agent Pathfinding via Planning and Learning.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), 17541–17549.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the International Symposium on Combinatorial Search
(SoCS), 151–159.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games, 4(2): 144–148.
Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 674–679.
Tjanaka, B.; Fontaine, M. C.; Lee, D. H.; Zhang, Y.; Balam,
N. R.; Dennler, N.; Garlanka, S. S.; Klapsis, N. D.; and
Nikolaidis, S. 2023. pyribs: A Bare-Bones Python Li-
brary for Quality Diversity Optimization. In Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO), 220–229.
Varambally, S.; Li, J.; and Koenig, S. 2022. Which
MAPF Model Works Best for Automated Warehousing? In
Proceedings of the Symposium on Combinatorial Search
(SoCS), 190–198.
Wagner, G.; and Choset, H. 2011. M*: A Complete Mul-
tirobot Path Planning Algorithm with Performance Bounds.
In IROS, 3260–3267.
Wagner, G.; and Choset, H. 2015. Subdimensional Expan-
sion for Multirobot Path Planning. Artificial Intelligence,
219: 1–24.

Wang, K. C.; and Botea, A. 2011. MAPP: A Scalable Multi-
Agent Path Planning Algorithm with Tractability and Com-
pleteness Guarantees. Journal of Artificial Intelligence Re-
search, 42: 55–90.
Wang, R.; Lehman, J.; Clune, J.; and Stanley, K. O. 2019.
Paired Open-Ended Trailblazer (POET): Endlessly Gener-
ating Increasingly Complex and Diverse Learning Environ-
ments and Their Solutions. ArXiv, abs/1901.01753.
Wang, R.; Lehman, J.; Rawal, A.; Zhi, J.; Li, Y.; Clune, J.;
and Stanley, K. O. 2020. Enhanced POET: Open-Ended
Reinforcement Learning through Unbounded Invention of
Learning Challenges and their Solutions. In Proceedings of
the International Conference on Machine Learning (ICML),
9940–9951.
Zhang, H.; Fontaine, M. C.; Hoover, A. K.; Togelius, J.;
Dilkina, B.; and Nikolaidis, S. 2020. Video Game Level
Repair via Mixed Integer Linear Programming. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 151–158.
Zhang, Y.; Fontaine, M. C.; Bhatt, V.; Nikolaidis, S.; and
Li, J. 2023a. Arbitrarily Scalable Environment Gener-
ators via Neural Cellular Automata. In Proceedings of
the Advances in Neural Information Processing Systems
(NeurIPS), 57212–57225.
Zhang, Y.; Fontaine, M. C.; Bhatt, V.; Nikolaidis, S.; and
Li, J. 2023b. Multi-Robot Coordination and Layout Design
for Automated Warehousing. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
5503–5511.
Zhang, Y.; Fontaine, M. C.; Hoover, A. K.; and Nikolaidis,
S. 2022. Deep Surrogate Assisted MAP-Elites for Auto-
mated Hearthstone Deckbuilding. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO),
158–167.
Zhang, Y.; Jiang, H.; Bhatt, V.; Nikolaidis, S.; and Li, J.
2024. Guidance Graph Optimization for Lifelong Multi-
Agent Path Finding. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 311–
320.

Figure 10: Archive of PBS with the number of obstacles and
std of BC as diversity measures.

A Choosing Diversity Measures
In this section, we justify our choice of diversity measures
by setting up the archive with every two pairs of competitive
diversity measures and exploring their relationship and be-
havior. We show the following experiments: (1) we compare
the number of obstacles and standard deviation of Between-
ness Centrality (std of BC) (Ewing et al. 2022), the number
of obstacles and λ2 (Ren et al. 2024), and show that the num-
ber of obstacles could quantify the general hardness of the
generated maps better than std of BC and λ2. (2) We com-
pare the KL divergence of the tile pattern distribution and
map entropy, the KL divergence of the tile pattern distribu-
tion and the KL divergence of the WL graph feature, and
show that the KL divergence of the tile pattern distribution
can generate more complex patterns than map entropy and
have less computational cost than the KL divergence of WL
graph feature.

A.1 General Hardness
Number of Obstacles vs. Std of BC. We run the one-
algorithm experiment of PBS with the number of obstacles
and std of BC as the diversity measures to explore the rela-
tionship between the two measures and their correlation with
the general hardness of generated maps. From Figure 10, we
observe that in the y-axis, with the increase of obstacles, the
CPU runtime of PBS is increasing, which is consistent with
the one-algorithm experiment result of PBS in Section 4 of
the main text. With fewer variations in the CPU runtime of
PBS at a given number of obstacles, we can quantify the
general hardness of the maps based on the number of obsta-
cles. From the x-axis, however, there are many maps with
the same std of BC but showing different general hardness
of the maps for PBS. Therefore, the std of BC is not a good
measure to quantify the general hardness of the maps.
Number of obstacles vs. λ2. We run the one-algorithm ex-
periment of PBS with the number of obstacles and λ2 as the
diversity measures to explore the relationship between the

Figure 11: Archive of PBS with the number of obstacles and
λ2 as diversity measures.

Figure 12: Archive of PBS with map entropy and KL diver-
gence of the tile pattern distribution as diversity measures.

two measures and their correlation with the hardness of the
generated maps. From Figure 11, we observe that most of
the generated maps are hard for PBS to solve. In this case,
the QD search is close to convergence, revealing that apply-
ing each diversity measure can efficiently generate challeng-
ing maps for PBS. Therefore, both diversity measures can
quantify the general hardness of generated maps. We use the
number of obstacles in our experiments due to its computa-
tional efficiency and intuitive interpretation.

A.2 Spatial Arrangement
KL Divergence of Tile Pattern Distribution vs. Map En-
tropy. We run a one-algorithm experiment with PBS. We
use the same objective in Section 4 and use map entropy and
KL divergence of the tile pattern distribution as the diversity
measures. Figure 12 shows the resulting archive of maps.

Figure 13: Archive of PBS with KL divergence of the tile
pattern distribution and KL divergence of WL graph feature
as diversity measure.

We observe that, with map entropy less than 0.5, the gener-
ated maps are usually composed of a large chunk of empty
spaces with a large component of obstacles on the boundary,
revealing a simple structure. Compared to maps generated
by the KL divergence of the tile distribution in Figure 5 of
Section 4, maps generated by map entropy have less diverse
patterns. Therefore, we use the KL divergence of tile pattern
distribution as the diversity measure.
KL Divergence of Tile Pattern Distribution vs. KL Di-
vergence of WL Graph Feature. We run the one-algorithm
experiment of PBS with diversity measures of the KL diver-
gence of the tile pattern distribution and the KL divergence
of the WL graph feature to explore their correlation and the
spatial arrangements in generated maps. From Figure 13, we
observe that all generated maps are well-distributed across
the archive, revealing a similar distribution of generated
maps with different pairs of KL divergence of the tile pat-
tern distribution and the KL divergence of WL graph feature.
Therefore, these two diversity measures are similar. Both
quantify the similarity between the generated maps and the
pre-defined set of maze maps (Stern et al. 2019). We use the
KL divergence of the tile pattern distribution in our experi-
ments since the WL graph feature needs a graph transforma-
tion and several iterations of hash transformation, which is
more computationally expensive.

B Maps with similar patterns
Figure 14 shows the easy maps of CBS, similar to the maps
shown in Figure 3 in Section 4 in the main text.

Figure 15 shows the challenging and easy maps of
EECBS, similar to the maps shown in Figure 4 in Section 4
in the main text.

Figure 16 shows the challenging and easy maps of PBS,
similar to the maps shown in Figure 5 in Section 4 in the
main text.

Figure 17 shows the challenging and easy maps of PIBT,

Figure 14: Similar maps with evenly distributed short cor-
ridor components or large chunks of empty space on which
CBS performs well. Maps (a) and (b) are maps with evenly
distributed short corridor components. Map (c) is the map
with large chunks of empty space. Map (d) is the map with
both evenly distributed short corridor components and large
chunks of empty space, but also long corridors on the left.

Figure 15: Map (a) and Map (b) are maps similar to rep-
resentative maps with long corridors and one-tile spaces
on which EECBS performs poorly. Map (c) and Map (d)
are maps similar to representative maps with two or more
columns of empty space between each long obstacle compo-
nent and short obstacle components on which EECBS per-
forms well.

similar to the maps shown in Figure 6 in Section 4 in the
main text.

Figure 18 shows the challenging and easy maps of LTF,
similar to the maps shown in Figure 7 in Section 4 in the
main text.

Figure 16: Map (a) and Map (b) are maps similar to rep-
resentative maps with one-tile entries between corridors on
which PBS performs poorly. Map (c) and Map (d) are maps
similar to representative maps of long corridors with more
entry spaces and short obstacle components on which PBS
performs well.

Figure 17: Map (a) and Map (b) are maps similar to rep-
resentative maps with long corridors and one-entry spaces
with many obstacles on which PIBT performs poorly. Map
(c) and Map (d) are maps similar to representative maps
with large chunks of empty space and one-entry spaces with
fewer obstacles on which PIBT performs well.

Figure 18: Map (a) and Map (b) are maps similar to repre-
sentative maps with long corridors and one-entry spaces on
which LTF performs poorly. Map (c) and Map (d) are maps
similar to representative maps with fewer obstacles on which
LTF performs well.

