
1

Toward Multi-Agent Moving Target Traveling
Salesman Problems

Anoop Bhat1 and Geordan Gutow1 and Bhaskar Vundurthy1 and
Zhongqiang Ren2 and Sivakumar Rathinam3 and Howie Choset1

Abstract—In the multi-agent close-enough moving target trav-
eling salesman problem (MA-CEMT-TSP), we aim to find tra-
jectories for several agents that collectively intercept a set of
moving targets. Intercepting a target requires an agent to enter
a disc centered at the target’s position within the target’s time
window. The infinite decision space of potential interception times
and locations poses a significant computational challenge. In this
work, we present PCG (Parallel Communicating Generalized
TSPs (GTSPs)), a method that addresses the infinite decision
space through sampling and achieves low computation times via
parallelization. PCG operates across several parallel processes,
each of which randomly samples a set of space-time points for
the agents, where each point corresponds to an interception
of some target. Each process then solves a multiple GTSP to
determine a sequence of points for each agent to visit. The
processes communicate their selected points to one another,
randomly sample new sets of points, and solve the multiple GTSP
again—this time selecting from both the newly sampled points
and the communicated points from the previous iteration. This
procedure repeats until the planning time is exhausted. We test
PCG on 100 problem instances against two baseline methods and
demonstrate that PCG achieves faster convergence in solution
cost.

I. INTRODUCTION

Given a set of targets and the travel cost between every
pair of targets, the traveling salesman problem (TSP) seeks
an order of targets for an agent to visit with minimum cost
[1], [2]. In the moving target TSP (MT-TSP), the targets are
moving, and we seek not only an order of targets, but also a
trajectory through the agent’s configuration space that visits
each target [3]. We consider the case where each target may
only be visited within some time window. In the close-enough
MT-TSP (CEMT-TSP), each target can be visited anywhere
within a disc centered at its current position. In the multi-agent
CEMT-TSP (MA-CEMT-TSP), there are multiple agents, and
each target must be visited by exactly one agent. An example
problem instance and solution are shown in Fig. 1. Note that
in this work, we consider Hamiltonian paths, where agents do
not need to return to their starting positions (depots).

1Anoop Bhat, Geordan Gutow, Bhaskar Vundurthy, and Howie Choset
are with the Robotics Institute at Carnegie Mellon University, 5000 Forbes
Ave., Pittsburgh, PA 15213, USA. Emails: {agbhat, ggutow, pvundurt,
choset}@andrew.cmu.edu

2Zhongqiang Ren is with Shanghai Jiao Tong University, Shanghai, China.
Email: zhongqiang.ren@sjtu.edu.cn

3Sivakumar Rathinam is with the Department of Mechanical Engineer-
ing at Texas A&M University, College Station, TX 77843. Email: srathi-
nam@tamu.edu

Fig. 1. Subfigure numbers indicate their order in time. Five targets (stars)
move along trajectories with time windows shown in bold colored lines.
Two agents (blue circles) execute trajectories beginning at respective depots
(red circles) and intercepting targets within their time windows and discs.
For targets that have already been intercepted, discs are not shown and
trajectories are made translucent. At moment of interception, agent performing
interception is indicated by yellow ”x”.

Since the MA-CEMT-TSP generalizes the TSP, solving the
MA-CEMT-TSP optimally is NP-hard1. Due to the presence
of time windows, even finding a feasible solution is NP-
complete [4]. There is no prior algorithm for the MA-CEMT-
TSP, although special cases have been studied. In particular,
when the radii of the targets’ are zero, we have the MA-MT-
TSP. Optimal algorithms exist for the MA-MT-TSP, assuming
that the trajectories of targets are linear or piecewise-linear
[5]–[8]. Without the piecewise-linear assumption, the only
prior approach to the MA-MT-TSP is to sample points in
space-time from the trajectories of targets, then determine a
sequence of points to visit for each agent using a multiple
generalized TSP (MGTSP) [6], [9]–[11].

Additionally, when the targets are stationary, and there are
no time windows, we have the well-studied close-enough TSP
(CETSP). Optimal algorithms exist for the CETSP [12], [13],
but these algorithms assume that given a sequence of targets,
the optimal position at which to visit each target can be
determined via convex optimization. This assumption does not
hold when the targets are moving along arbitrary trajectories.
The CETSP approach most relevant to the MA-CEMT-TSP is
the approach from [14]–[16], which samples the targets’ discs

1In this work, when we say an algorithm has ”solved” an instance of a TSP
variant, we mean it found a feasible, but not necessarily optimal, solution. We
use ”solve optimally” to refer to finding an optimal solution

2

into a finite set of points in space, then determines a sequence
of points to visit via a GTSP.

We can readily combine the sampling-based approaches
for the MA-MT-TSP and the CETSP. In particular, we can
sample several points in space-time, each contained within
some target’s disc at some time within that target’s time
window. Then we can determine a sequence of points to visit
for each agent by solving an MGTSP. With this sampling-
based method, solution quality depends on the number of
sample points used. Using a large number of points increases
the likelihood of finding low-cost trajectories, but leads to long
MGTSP solve times.

In this work, we present PCG (Parallel Communicating
GTSPs), which leverages parallelization to use a large number
of sample points while maintaining low MGTSP solve times.
At each iteration, PCG runs several parallel child processes,
each solving its own MGTSP on a coarse set of samples.
While some of the samples are unique for each process, PCG
additionally maintains an informed set of sample points that
is shared by all processes, containing the points from the
solutions found by the processes in the previous PCG iteration.
We compare PCG to a baseline that samples densely within
a single process and a baseline that solves several coarse
MGTSPs in parallel, but without communication. We show
that PCG’s solution cost converges more quickly than both
baselines.

II. PROBLEM SETUP

We consider a set of agents I = {1, 2, . . . , |I|}, each
with configuration space Q = R2. Let di ∈ R2 be the
initial configuration, or depot, of agent i. All agents have a
common maximum speed vmax. Let the trajectory of agent i
be τ i : R+ → Q. We refer to a tuple τ# = (τ1, τ2, . . . , τ |I|)
as a joint trajectory.

The set of moving targets is J = {1, 2, . . . , |J |}. The
trajectory of target j is τj : R+ → Q, the time window
of target j is Wj ⊂ R+, and the radius of target j is
rj . We say an agent trajectory τ i intercepts target j if for
some t ∈ Wj , ∥τ i(t) − τj(t)∥ ≤ rj . We say a joint
trajectory τ# = (τ1, τ2, . . . , τ |I|) intercepts target j if some
τ i intercepts target j.

The MA-CEMT-TSP seeks a joint trajectory τ# =
(τ1, τ2, . . . , τ |I|) intercepting all targets, such that τ i(0) = di

for all i and each τ i satisfies ∥τ̇ i(t)∥ ≤ vmax for all t. In
this work, the cost function we aim to minimize is sum of

distances traveled by all agents, i.e.
∑
i∈I

∞∫
0

∥τ̇ i(t)∥2dt.

III. PCG ALGORITHM

PCG is described by Alg. 1, which we refer to as the
main process. We also provide an illustration in Fig. 2. PCG
begins by finding an initial trajectory ∗τ# (Alg. 1, Line 1).
We describe the initial trajectory generation in Section III-A.
After finding this initial trajectory, PCG initializes an informed
set †Sj for each target. In particular, it initializes †Sj as a
singleton set, containing the point (q, t) ∈ Q × R+ at which
∗τ# intercepts target j (Line 4).

After initializing the informed sets, PCG begins its tra-
jectory improvement loop (Line 5). Each iteration of this
loop runs nproc parallel child processes. Each child process
k generates a set of sample points kSj for each target j.
In particular, kSj contains all points in †Sj , as well as nrand
randomly sampled points unique to process k. We obtain each
random point (q, t) by sampling a time t ∈ Wj uniformly at
random, then sampling a position q ∈ Brj (τj(t))) uniformly
at random, where Brj (τj(t))) is the disc of radius rj centered
at τj(t).

After constructing kSj , each process k finds a joint trajec-
tory kτ# via TrajViaMGTSP, described in Section III-B. We
pass ∗τ# as a seed trajectory that TrajViaMGTSP improves
upon. After finding a trajectory kτ#, each process k generates
a list of points kP , which we call process k’s informed list. The
jth element kP [j] is the point at which kτ# intercepts target
j. We then update the informed sets, such that †Sj contains all
points associated with target j from all informed lists in the
current iteration. Finally, we update ∗τ# to the best trajectory
found by any child process. If there is more time left, PCG
run its child processes again using the new informed sets.
Otherwise PCG returns ∗τ#.

Algorithm 1: PCG
1 ∗τ# = GenerateInitialTrajectory ();
2 if ∗τ# is NULL then return NULL;
3 for j ∈ J do
4 †Sj = {GetInterceptionPoint(j, ∗τ#)};

// Trajectory improvement
5 while Time limit has not been reached do
6 parallel for k ∈ {1, 2, . . . , nproc} do
7 for j ∈ {1, 2, . . . , |J |} do
8 kSj =

†Sj ∪ RandomSamples(nrand);

9 kτ# = TrajViaMGTSP({kSj}j∈J , ∗τ#);
10 Initialize kP as list of length |J |;
11 for j ∈ {1, 2, . . . , |J |} do
12 kP [j] = GetInterceptionPoint(j, kτ#);

13 for j ∈ J do
14 †Sj = {1P [j], 2P [j], . . . , nprocP [j]};

15 Set ∗τ# equal to kτ# with least cost;

16 return ∗τ#;

A. Initial Trajectory Generation

GenerateInitialTrajectory, described by Alg. 2,
begins by randomly sampling a set of points 0Sj for each target
j, using the same random sampling method described in Sec-
tion III. Here, the pre-superscript 0 indicates that the sampling
occurs in the main process, which can be considered process
0. Alg. 2 then seeks a joint trajectory ∗τ# intercepting each
target j at a point in 0Sj , via TrajViaMGTSP (Section III-B).
Here, we do not pass a seed trajectory to TrajViaMGTSP,
in contrast to Alg. 1, since we do not have a seed trajectory to
pass. For a given set of sample points, TrajViaMGTSP may

3

Fig. 2. Illustration of an iteration of trajectory improvement in PCG. The main process maintains an informed set of points †Sj for each target j. Points in the
current iteration’s informed sets are outlined in red. Each child process k generates a set of sample points kSj for each target j, containing the points from the
current †Sj , as well as random points unique to process k. Each child process then solves an MGTSP, finding a sequence of points and associated trajectory
for each agent. Each child process k then constructs an informed list kP , where the jth element kP [j] is the point at which target j is visited in process k’s
MGTSP solution. Finally, the main process updates the informed sets, where the new informed set for target j is †Sj = {1P [j], 2P [j], . . . , nprocP [j]}.

not find a feasible trajectory: if this is the case, and there is
time left, PCG adds more samples to each 0Sj and attempts
to find a trajectory again.

Algorithm 2: GenerateInitialTrajectory
1 0Sj = ∅ for all j ∈ J ;
2 while Time limit has not been reached do
3 for j ∈ {1, 2, . . . , |J |} do
4 0Sj =

0Sj ∪ RandomSamples(nrand);

5 ∗τ# = TrajViaMGTSP({0Sj}j∈J);
6 if ∗τ# is not NULL then
7 return ∗τ#;

8 return NULL;

B. Finding Joint Trajectory via MGTSP

This section describes the TrajViaMGTSP function used
in Alg. 1 and Alg. 2. Given a set2 Sj for each target j and
the depot di for each agent i, we first construct a graph G =
(V, E), where V is the set of nodes and E is the set of edges.
V contains all sample points and all depots, where the depots
are paired with time 0, i.e. V =

⋃
j∈J

Sj ∪
⋃
i∈I

{(di, 0)}. We

refer to the nodes (di, 0) as depot nodes, and we define di =
(di, 0). We connect an edge from node (q, t) to node (q′, t′)

2This will always be some set kSj for some k. We drop the pre-superscript
here for clarity.

if ∥q′ − q∥ ≤ vmax(t
′ − t), and the edge cost is ∥q′ − q∥. An

MGTSP on G seeks a path (sequence of nodes) πi for each
agent i, such that each πi begins at di, and for each j, some
node in Sj is contained in some πi. After finding a path πi for
each agent i, we can construct a trajectory τ i for each agent i
by connecting consecutive points in πi with straight lines. We
then have a joint trajectory τ# solving the MA-CEMT-TSP.

We find paths πi solving the MGTSP by transforming
the MGTSP into a single-agent GTSP. Define a transformed
graph G̃ = (Ṽ, Ẽ), where Ṽ = V , and Ẽ contains all edges in
E , an edge (di, di+1) for each i < |I|, and an edge (s, di) for
each non-depot node s and each i > 1. We set the cost of all
additional edges to zero. We then pose a single-agent GTSP
on G̃, seeking a path π that visits one node within each Sj , as
well as all depot nodes3. Since no edge enters d1, π must start
with d1. Thus, a solution to this GTSP takes the form π =
(d1, π1[2], π1[3], . . . , π1[−1], d2, π2[2], π2[3], . . . , π|I|[−1]),
where πi[l] is the lth point visited in the subpath beginning
with di, πi[−1] is the latest point in π before di+1 for
each i < |I|, and π|I|[−1] is the final node in π. We
can convert π into a solution for the original MGTSP by
breaking π into individual agent paths π1, π2, . . . , π|I|, with
πi = (di, πi[2], πi[3], . . . , πi[−1]).

We solve the GTSP on G̃ using one of two methods. If no
seed trajectory is passed, we solve the GTSP via the depth-
first search (DFS) described in Section III-C, which ignores

3In general, given a graph where the nodes are partitioned into clusters, a
GTSP seeks a path visiting one node per cluster. In our case, the clusters are
the sets Sj as well as a singleton cluster corresponding to each depot node.

4

the cost function and aims to find a feasible solution as quickly
as possible. If a seed trajectory is passed, we solve the GTSP
using the state-of-the-art heuristic solver GLNS [17]. In this
case, we use the seed trajectory to construct a seed path that
GLNS then improves upon. In particular, suppose the seed
trajectory is τ# = (τ1, τ2, . . . , τ |I|). Let πi be the sequence
of nodes in Ṽ visited by τ i. We construct the seed path π for
GLNS by concatenating the paths πi in order of increasing i.
We only run GLNS if we have a seed path because we have
found that on incomplete graphs such as G̃, GLNS struggles
to even find a feasible path unless we initialize it with one.

Note that prior work on the MA-MT-TSP [9] solves the
MGTSP by transforming it into a single-agent TSP, then
solving the TSP using the state-of-the-art TSP solver LKH
[18]. In Section IV-D we show that, empirically, transforming
the MGTSP to a GTSP outperforms this approach. Thus
we use the GTSP-based transformation within PCG and all
baselines we compare against.

C. Solving Transformed MGTSP via Depth-First Search

When generating the initial trajectory in PCG, we solve the
GTSP posed in Section III-B using a DFS on G̃, with the aim
of quickly finding a feasible solution without considering its
cost. The DFS is outlined in Alg. 3. Before beginning the main
loop, we construct several data structures. First, we construct
a set J i for each agent i, containing all targets j that can
be visited by some agent l, with l > i. Next, we construct a
set BEFORE[s] for each node s ∈ Ṽ , containing all targets
that have no sample points reachable in one step from s. The
construction of BEFORE is inspired by the BEFORE set from
[19], which addresses the TSP with time windows. In our
context, the construction of BEFORE[s] ensures that for any
j ∈BEFORE[s], for any s′ ∈ Sj , a path from s to s′ must
contain a depot node. In other words, after an agent i visits s,
it is impossible for agent i to then visit target j. Thus if agent
i has not already visited target j, some other agent must visit
target j.

After constructing these data structures, the main loop
begins. The loop maintains a stack of paths through G̃ and
terminates when it pops a path that solves the GTSP. When
we pop a path π from the stack that is not a GTSP solution,
we generate the successor nodes of π, defined as follows.

For a node s′ to be a successor node to π, it must satisfy
the following conditions:

1) (π[−1], s′) ∈ Ẽ , where π[−1] is the final node in π.
2) If s′ ∈ Sj for some j, π does not visit any nodes in Sj .
3) Let i be the largest index such that π contains di, and

let π′ be the path obtained by appending s′ to π. For
all targets j ∈ BEFORE[s′] that are unvisited by π′, we
require j ∈ J i.

Condition 1 ensures that by appending s′ to π, we obtain a
valid path in G̃. Condition 2 ensures that each target is visited
once. Condition 3 ensures that if by visiting s′, agent i can no
longer visit target j, some other agent can still visit target j.

After generating the successor nodes of π, we sort them
in order of decreasing time, resulting in successors with
earlier arrival times getting added to the stack later, and

therefore popped sooner. Finally, for each successor node s′,
we generate a successor path π′ by appending s′ to π, then
push π′ onto the stack.

Algorithm 3: DepthFirstSearch
1 for i ∈ I do
2 J i = {j ∈ J : (dl, s) ∈ Ẽ for some s ∈ Sj , l ≥ i}
3 BEFORE = dict();
4 for s ∈ Ṽ do
5 BEFORE[s] =

{j ∈ J : s /∈ Sj ∧ (∀s′ ∈ Sj)((s, s
′) /∈ Ẽ)};

6 π∗ = NULL;
7 STACK = [(d1)];
8 while STACK is not empty do
9 π = STACK.pop();

10 if π is GTSP solution then
11 π∗ = π;
12 break;

13 for s′ in π.successorNodes().sort() do
14 π′ = π.append(s′);
15 STACK.push(π′);

16 return π∗;

IV. NUMERICAL RESULTS

We ran experiments on an Intel i9-9820X 3.3GHz CPU
with 128 GB RAM and 20 cores. We set nproc = 8 and
nrand = 12 in PCG. We compared PCG against two baselines.
Each baseline runs Alg. 4 with different values of nrand and
nproc. Alg. 4 runs the same initial trajectory generation routine
as PCG, using the same nproc and nrand values as PCG within
GenerateInitialTrajectory regardless of what val-
ues are used in the rest of the pseudocode. This ensures that
all methods have the same initial trajectory. After finding an
initial trajectory, Alg. 4 runs nproc child processes that each
sample and solve their own MGTSP without communicating
with one another. Finally, Alg. 4 returns the joint trajectory
with lowest cost over all child processes.

Our first baseline, which we call Serial GTSP, runs Alg. 4
with nproc = 1 and nrand = 96. This results in the same number
of random points sampled per target at each improvement
iteration as PCG, but all collected in a single process rather
than 8 processes. The second baseline, which we call Parallel
Decoupled GTSPs, runs Alg. 4 with nproc = 8 and nrand = 12,
i.e. with the same parameters as PCG.

We generated 100 problem instances to evaluate our algo-
rithm. Within a single instance, all target radii are equal to a
single value, which we call the target radius. In Experiment 1,
we varied the number of targets. In Experiment 2, we varied
the number of agents. In Experiment 3, we varied the target
radius. In Experiment 4, we varied the number of targets
again, but compared our MGTSP transformation method to the
method from [9]. For each combination of number of targets,
number of agents, and target radius, we generated 10 instances.
The computation time limit per planner per instance was 120
s.

5

Algorithm 4: Baseline
1 ∗τ# = GenerateInitialTrajectory ();
2 parallel for k ∈ {1, 2, . . . , nproc} do
3 kτ# = ∗τ#;
4 while Time limit has not been reached do
5 for j ∈ {1, 2, . . . , |J |} do
6 kSj =

{GetInterceptionPoint(j, kτ#)} ∪
RandomSamples(nrand);

7 kτ# = TrajViaMGTSP({kSj}j∈J , kτ#);

8 Set ∗τ# equal to kτ# with least cost;

A. Experiment 1: Varying the Number of Targets

In this experiment, we varied the number of targets, with
2 agents and target radius 10. We show the trajectory cost
as a function of planning time for all planners in Fig. 3
(a) and the area under the curve (AUC) of cost vs time in
Fig. 4 (a). PCG has a smaller min, median, and max AUC
than all baselines for all numbers of targets. As we increase
the number of targets, the differences in AUC between PCG
and the baselines becomes more pronounced. Additionally,
Parallel Decoupled GTSPs outperforms Serial GTSP. The fact
that Parallel Decoupled GTSPs and PCG outperform Serial
GTSP highlights that solving several small problems on coarse
sample sets in parallel results in faster cost reduction than
solving a single problem on a dense set of samples. The fact
that PCG outperforms Parallel Decoupled GTSPs highlights
the benefit of communication between parallel processes.

B. Experiment 2: Varying the Number of Agents

In this experiment, we varied the number of agents, setting
the number of targets to 200 and the target radii to 10. We
show the trajectory cost vs. planning time curves in Fig.
3 (b) and the associated AUC plots in Fig. 4 (b). For all
numbers of agents, PCG has the smallest min, median, and
max AUC, though as we increase the number of agents past
4, the gap in median AUC between any two planners becomes
smaller. Additionally, the minimum attained trajectory cost by
any algorithm appears to asymptote to zero as we increase
the number of agents. This is expected, since as we take
the number of agents to infinity, randomly sampling a depot
location for each agent, the probability that every target’s disc
contains a depot at some time in its time window approaches
one. When this occurs, an instance can be solved without any
agent moving away from its depot, and thus with zero cost.

C. Experiment 3: Varying the Target Radius

In this experiment, we varied the target radius, setting the
number of targets to 200 and the number of agents to 2. We
show the trajectory cost vs. planning time curves in Fig. 3
(c) and the associated AUC plots in Fig. 4 (c). PCG has the
smallest min, median, and max AUC for all radius values.
As we increase the target radius, which enlarges the space of
feasible trajectories, PCG shows more benefit.

Fig. 3. Cost vs. planning time. (a) Varying number of targets, with 2 agents
and target radius 10. (b) Varying number of agents, with 200 targets and target
radius 10. (c) Varying target radius, with 200 targets and 2 agents.

D. Experiment 4: Comparing Transformation Methods

In this experiment, we compared our GTSP-based transfor-
mation against the prior TSP-based transformation [20]. We
varied the number of targets from 50 to 200, set the number
of agents to 2, and the target radius to 10, i.e. we used the
same instances as in Experiment 1. For this experiment, we
simply ran Alg. 4 with nproc = 1 and nrand = 12 using each
transformation method. The results are in Fig. 5. Transforming
to a GTSP then solving the GTSP with GLNS outperforms
transforming to a TSP and solving with LKH in terms of min,
median, and max AUC, and the gap in AUC becomes more
pronounced with more targets. This occurs because GLNS
solves the transformed GTSPs much more quickly than LKH
solves the tranformed TSPs, as seen in Fig. 5 (c), allowing
Alg. 4 to iterate quickly and examine a larger total number
of sample points within the time budget. This difference in
solve time is expected, considering that the worst-case runtime
complexity of GLNS when solving the transformed GTSP is
O(nrand), whereas the complexity of LKH when solving the

6

Fig. 4. Statistics for area under the curve (AUC) of the cost vs. time curves
used to generate Fig. 3. PCG has the smallest min, median, and max AUC for
all instance settings, showing the most benefit for large numbers of targets,
small numbers of agents, and large target radii.
transformed TSP is O(n2

rand), for a fixed number of targets.
Note that in Fig. 5, the LKH solver time for the TSP-based

transformation saturates for large numbers of targets because
Alg. 4 often reaches the time limit while solving its first
MGTSP. The saturation value is not equal to the time limit
of 120 s because of time spent outside LKH, e.g. in initial
trajectory generation.

V. CONCLUSION

In this paper, we introduced PCG, a parallel sampling-based
algorithm for the multi-agent close-enough moving target TSP.
We showed that PCG outperforms a serial algorithm based
on dense sampling, as well as a parallel algorithm without
communication. In future work, we will consider inter-agent
collision avoidance within variants of the moving target TSP.

REFERENCES

[1] W. J. Cook, D. L. Applegate, R. E. Bixby, and V. Chvatal, The traveling
salesman problem: a computational study. Princeton university press,
2011.

Fig. 5. Comparing MGTSP transformation methods. (a) Cost vs. planning
time. (b) Statistics for AUC of cost vs time curves. (c) Solver time (i.e. time
spent in LKH or time spent in GLNS) per MGTSP solved, on a log scale.

[2] G. Gutin and A. P. Punnen, The traveling salesman problem and its
variations. Springer Science & Business Media, 2006, vol. 12.

[3] C. S. Helvig, G. Robins, and A. Zelikovsky, “The moving-target
traveling salesman problem,” Journal of Algorithms, vol. 49, no. 1, pp.
153–174, 2003.

[4] M. W. Savelsbergh, “Local search in routing problems with time
windows,” Annals of Operations research, vol. 4, pp. 285–305, 1985.

[5] A. G. Philip, Z. Ren, S. Rathinam, and H. Choset, “A mixed-integer
conic program for the moving-target traveling salesman problem based
on a graph of convex sets,” arXiv preprint arXiv:2403.04917, 2024.

[6] A. Stieber and A. Fügenschuh, “Dealing with time in the multiple
traveling salespersons problem with moving targets,” Central European
Journal of Operations Research, vol. 30, no. 3, pp. 991–1017, 2022.

[7] A. Stieber, “The multiple traveling salesperson problem with moving
targets,” Ph.D. dissertation, BTU Cottbus-Senftenberg, 2022.

[8] A. G. Philip, Z. Ren, S. Rathinam, and H. Choset, “A mixed-integer
conic program for the multi-agent moving-target traveling salesman
problem,” arXiv preprint arXiv:2501.06130, 2025.

[9] N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot rendezvous
planning for recharging in persistent tasks,” IEEE Transactions on
Robotics, vol. 31, no. 1, pp. 128–142, 2015.

[10] B. Li, B. R. Page, J. Hoffman, B. Moridian, and N. Mahmoudian,

7

“Rendezvous planning for multiple auvs with mobile charging stations
in dynamic currents,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1653–1660, 2019.

[11] A. G. Philip, Z. Ren, S. Rathinam, and H. Choset, “C*: A new bounding
approach for the moving-target traveling salesman problem,” arXiv
preprint arXiv:2312.05499, 2023.

[12] W. P. Coutinho, R. Q. d. Nascimento, A. A. Pessoa, and A. Subramanian,
“A branch-and-bound algorithm for the close-enough traveling salesman
problem,” INFORMS Journal on Computing, vol. 28, no. 4, pp. 752–765,
2016.

[13] W. Zhang, J. J. Sauppe, and S. H. Jacobson, “Results for the close-
enough traveling salesman problem with a branch-and-bound algorithm,”
Computational Optimization and Applications, vol. 85, no. 2, pp. 369–
407, 2023.

[14] F. Carrabs, C. Cerrone, R. Cerulli, and M. Gaudioso, “A novel dis-
cretization scheme for the close enough traveling salesman problem,”
Computers & Operations Research, vol. 78, pp. 163–171, 2017.

[15] F. Carrabs, C. Cerrone, R. Cerulli, and C. D’Ambrosio, “Improved upper
and lower bounds for the close enough traveling salesman problem,” in
Green, Pervasive, and Cloud Computing: 12th International Conference,
GPC 2017, Cetara, Italy, May 11-14, 2017, Proceedings 12. Springer,
2017, pp. 165–177.

[16] F. Carrabs, C. Cerrone, R. Cerulli, and B. Golden, “An adaptive heuristic
approach to compute upper and lower bounds for the close-enough
traveling salesman problem,” INFORMS Journal on Computing, vol. 32,
no. 4, pp. 1030–1048, 2020.

[17] S. L. Smith and F. Imeson, “Glns: An effective large neighborhood
search heuristic for the generalized traveling salesman problem,” Com-
puters & Operations Research, vol. 87, pp. 1–19, 2017.

[18] K. Helsgaun, “An effective implementation of the lin–kernighan travel-
ing salesman heuristic,” European journal of operational research, vol.
126, no. 1, pp. 106–130, 2000.

[19] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon, “An optimal
algorithm for the traveling salesman problem with time windows,”
Operations research, vol. 43, no. 2, pp. 367–371, 1995.

[20] N. Mathew, S. L. Smith, and S. L. Waslander, “A graph-based approach
to multi-robot rendezvous for recharging in persistent tasks,” in 2013
IEEE International Conference on Robotics and Automation, 2013, pp.
3497–3502.

	Introduction
	Problem Setup
	PCG Algorithm
	Initial Trajectory Generation
	Finding Joint Trajectory via MGTSP
	Solving Transformed MGTSP via Depth-First Search

	Numerical Results
	Experiment 1: Varying the Number of Targets
	Experiment 2: Varying the Number of Agents
	Experiment 3: Varying the Target Radius
	Experiment 4: Comparing Transformation Methods

	Conclusion
	References

