
Goal Distribution in Conflict-Based Search for Multi-Agent Pathfinding and its
Implications to Monte-Carlo Sampling

Colton Simpson1, Sumedh Pendurkar1, Guni Sharon1

1Texas A&M University, College Station, TX 77843, USA
{csimpson2018, sumedhpendurkar, guni}@tamu.edu

Abstract

Conflict-Based Search (CBS) is a common two-level search
framework for solving Multi-Agent Path Finding (MAPF)
problem. At its high-level, CBS searches over a Constraint
Tree (CT). A body of publications looked at various ap-
proaches to perform the high-level search (over the CT) and
find a goal (conflict-free) node efficiently. The performance
of these variants is dependent on the goal node distribution in
the CT. Consequently, we provide a first-of-its-kind analysis
of the goal-node distribution in the CT for common bench-
mark MAPF maps with respect to (1) solution quality, (2)
solution depth (as rollout runtime), and (3) solution subop-
timality. The results suggest that samples of solution quality
and suboptimality can be reasonably fitted (low Kolmogorov-
Smirnov distance) with a log-normal distribution and sam-
ples of runtime with a ‘F’ distribution. Moreover, we show
that the percentage of CT branches that do not lead to a goal
node is marginal (∼0%) for sparse density and low (∼16%)
for medium agent density in common MAPF maps. These
results suggest that random rollouts on the CT could be ef-
fective in such scenarios. Consequently, we consider Monte-
Carlo Conflict-Based Search (MC-CBS), where random roll-
outs are performed over the CT. MC-CBS has four main
advantages, (1) it is asymptotically optimal, (2) it provides
probabilistic suboptimality guarantees, (3) it enables full uti-
lization of multicore, parallel computation, and (4) it is in-
tuitive and simple to implement. Next, we examine an en-
hanced variant MC-CBS+ which incorporates state-of-the-
art improvements to the low-level search in CBS. Although
MC-CBS+ is not asymptotically optimal, it provides compu-
tational speedups in dense MAPF instances. Finally, we pro-
vide an empirical evaluation of MC-CBS and MC-CBS+ on
12 common benchmark MAPF maps. The results suggest that
MC-CBS+ can outperform state-of-the-art bounded subopti-
mal solver in sparse scenarios with respect to both runtime
and solution quality. These results suggest that sampling-
based methods, which were previously overlooked, should be
further explored by the MAPF community.

1 Introduction
The goal in the Multi-Agent Path Finding (MAPF) problem
is to find conflict-free paths for multiple agents leading from
their starting location to their respective target location. This
problem has a wide range of applications in areas such as

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

traffic management (Okoso, Otaki, and Nishi 2019), ware-
house logistics (Ma et al. 2017), and airport operations (Li
et al. 2019b).

Conflict-Based Search (CBS) (Sharon et al. 2015) is a
widely used framework to solve MAPF problems. CBS
works on two levels: at the high-level, CBS constructs a
Constraint Tree (CT). Each node in this tree represents a set
of constraints and a solution that satisfies the constraints.
AQ solution is a set of paths, one per agent. At the low-
level, CBS computes a single-agent path for a given agent,
returning a path satisfying the constraints imposed by the
high level.

Recent work demonstrated significant speed-ups over the
original CBS framework when applying advanced search
methods over the CT. For instance, Felner et al. (2018) used
the A* algorithm (Hart, Nilsson, and Raphael 1968), Bo-
yarski et al. (2020) used iterative deepening A* (Korf 1985),
Barer et al. (2014) used focal search (Pearl and Kim 1982),
and Li, Ruml, and Koenig (2021) used explicit estimation
search (Thayer and Ruml 2011). These studies suggest that
the performance of CBS is sensitive to the choice of the
high-level (CT) search algorithm. That is, the order in which
one generates and expands CT nodes, in search of a goal CT
node, impacts the computational effort and solution quality.
Consequently, we provide a first-of-its-kind CT goal-node
distribution analysis for a variety of benchmark MAPF sce-
narios. Specifically, we report empirical CT goal node dis-
tributions with respect to (1) solution quality (as sum-of-
costs), (2) root-to-goal expansion runtime, and (3) (approxi-
mated) suboptimality. The reported distributions are fitted to
10,000 random rollouts on the CT. The results suggest that
several distributions could be viewed as well-fitting to the
samples obtained per map and agent density. Overall, log-
normal distribution could be considered a reasonable fit to
solution quality (sum-of-costs) and suboptimality distribu-
tions in the majority of reported scenarios. Similarly, run-
time distribution can be reasonably fitted with a F distribu-
tion in the majority of reported scenarios. The results further
suggest that relatively few rollouts fail (not leading to a goal
node, i.e., dead-ends or timeouts) in scenarios that are not
very dense. Specifically, 100% of the sparse scenarios, 83%
of medium density scenarios, and 33% of dense scenarios
lead to a goal node in more than 90% of sampled rollouts.
This implies that random (rollout-based) search algorithms

over the CT could be effective MAPF solvers when used in
the CBS framework.

Following our goal distribution study, we consider a ran-
dom rollout-based approach, which we refer to as Monte
Carlo CBS (MC-CBS). MC-CBS has four main advantages
(1) it is asymptotically optimal; (2) it provides probabilis-
tic suboptimality guarantees (suboptimality < x with prob-
ability y); (3) it enables parallel computation, resulting in
full utilization of multicore systems; and (4) it is intuitive
and simple to implement on top of the widely accepted CBS
algorithm. Moreover, we present an enhanced variant, de-
noted MC-CBS+, which incorporates state-of-the-art low-
level search improvements for CBS. Although MC-CBS+
is not asymptotically optimal, experimental results present
reduced runtime over MC-CBS making it more practical in
denser scenarios. Finally, we provide a comparative study on
12 common benchmark maps and 3 agent densities. The re-
sults suggest that MC-CBS+ can outperform a state-of-the-
art bounded suboptimal solver (EECBS+) in sparse scenar-
ios. These results highlight the potential of sampling based
methods for searching over the CT (high-level search) in the
CBS framework.

2 Preliminaries
A multi-agent path finding (MAPF) problem is defined over
a graph, G(V,E), and m agents {a1, a2, · · · am}. Each
agent ai has a distinct start vertex si ∈ V and a distinct
goal vertex gi ∈ V . We consider the discrete time version of
MAPF following Classical MAPF in Stern et al. (2019). At
each time-step, an agent can move to any adjacent vertex or
wait at the current vertex. We focus on MAPF variants with
vertex and swapping conflicts, the stay at target assumption,
and use sum-of-individual-costs (SIC) as the optimization
objective as described by Stern et al. (2019). A given graph,
G(V,E), together with a fixed number of agents, m, are re-
ferred to as a scenario. A scenario with a fixed set of start
and goal vertices, ∀i ∈ m, {si, gi}, is referred to as an in-
stance of the MAPF scenario. A valid path pi for agent ai
is a chronological sequence of vertices where the first vertex
in pi is si, the last vertex is gi, and any consecutive vertices
have a connecting edge in E. The cost of a path, pi, is the
number of vertices in the path denoted by |pi|. A solution of
the MAPF instance is a set of paths, P = {p1, p2, · · · , pm}.
A solution is valid if it the individual paths are not conflict-
ing. An optimal solution is a valid solution that minimizes
the SIC objective given by c∗ = minP

∑i=m
i=1 |pi|. A solver

is bounded suboptimal with a factor of w if it is guaranteed
to return a valid solution with cost c such that c ≤ w · c∗ for
all solvable instances.

2.1 Conflict-Based Search (CBS)
CBS (Sharon et al. 2015) is a widely used framework for
solving MAPF problems either optimally (Sharon et al.
2015; Boyarski et al. 2015b; Felner et al. 2018) or with
bounded suboptimality (Barer et al. 2014; Li, Ruml, and
Koenig 2021). CBS is a two-level search framework: The
high-level searches a Constraint Tree (CT), where each node
represents (1) a set of constraints, each applying to a spe-

cific agent, and (2) a solution (not necessarily valid) which
satisfies the set of constraints. If one or more conflicts ex-
ist in a CT node’s (invalid) solution, the CT branches, cre-
ating two child nodes with constraints that resolve one of
these conflicts. The high-level search in the basic version of
CBS (Sharon et al. 2015) performs a best-first search on the
CT. A CT node that has a valid solution is denoted a goal
node. A non-goal CT node with no child nodes is a dead-
end. These situations can occur when a constraint added for
a potential child node disables all possible paths for one of
the agents, e.g., by disallowing it to occupy any vertex at
a specific timestep. As a result, the potential child node in
question is pruned.

Note, a CT is not unique per MAPF instance. CT nodes
are dependent on how conflicts are selected at their prede-
cessor node as well the search algorithm used for comput-
ing the individual single-agent paths, denoted the low-level
search. In order to avoid ambiguity in the CT structure, we
assume Conflict Prioritization (Boyarski et al. 2015b) for
conflict selection. For the low-level search, we consider two
variants, (1) single-agent A∗, as proposed by Sharon et al.
(2015), and (2) focal search with enhancements as proposed
by Li, Ruml, and Koenig (2021). We denote the CT obtained
with (1), (2) as CT-, CT+ respectively.

2.2 Related Work
MAPF approaches can be broadly divided into three cate-
gories (following Okumura (2023)):

(1) Compilation Based: This class of MAPF solvers in-
cludes approaches like eMDD-SAT (Surynek et al. 2018),
BCP-7 (Lam et al. 2019). eMDD-SAT is a bounded subopti-
mal solver that reduces a MAPF problem to a Boolean satis-
fiability (SAT) problem and solves the SAT problem to pro-
duce a valid solution. BCP-7 is an optimal solver that uses
branch-and-cut-and-price to produce the optimal solution.

(2) Prioritized Planning Based: These approaches se-
quentially plan individual paths conditioned on previously
planed paths. The agents’ planning order is based on a spe-
cific priority assignment (Erdmann and Lozano-Perez 1987;
Silver 2005).

(3) Search Based: Hierarchical Cooperative A∗ for
MAPF (Silver 2005), M∗ (Wagner and Choset 2015),
CBS (Sharon et al. 2015) and LaCAM (Okumura 2023)
are examples of search-based MAPF solvers. LaCAM, like
CBS, uses a two-level search framework where at the low-
level the search is performed over constraints regarding the
agent locations, and at the high-level it searches for a se-
quence of all agents’ locations, following the constraints
from low-level search. LaCAM can solve challenging sce-
narios significantly faster as compared to previous baselines,
but does not provide any guarantee on the solution quality.
An improved version of LaCAM, called LaCAM* (Oku-
mura 2024) is an anytime variant of LaCAM with various
improvements, such as Monte-Carlo configuration genera-
tion, space utilization optimization, and recursive improve-
ment of discovered solutions, with a guarantee of eventual
optimality.

Map CT- CT+
Sparse Medium Dense Sparse Medium Dense

TO DE TO DE TO DE TO DE TO DE TO DE
brc202d 0 0 0 0 0.24 0 0 0.07 0.01 0.08 0.11 0.02

gallows templar 0 0 1.38 0.01 46.78 0 0 0.01 0.23 0.25 0.95 0.58
maze 0.02 0.09 46.02 1.92 88.08 11.09 0 37.29 0.32 73.60 5.55 93.58

orz900 0 0 0 0 0 0 0.02 0.02 0.01 0 0 0
ost003 0 0 0 0.01 12.93 0.05 0 0.03 0.06 0.79 1.31 1.64

random 64 0 0 0 1.19 51.85 15.85 0 0.80 0 11.10 0 23.50
random 0 0.15 0 10.21 0.11 91.94 0 2.58 0 10.62 0 23.28
room32 0 0.43 0 8.92 3.57 96.40 0 10.85 0 24.89 0.01 82.11

room 64 8 0 0 0.22 0.10 98.81 1.19 0 10.76 0.39 38.90 14.54 52.52
room 0 0 8.88 0.01 99.87 0.08 0 4.53 1.52 12.25 19.10 16.46

warehouse 1 0 0 0.03 0.25 3.21 1.77 0 0 0.02 0.17 0.36 0.53
warehouse 0 0 0 0.01 1.29 0 0 0 0 0 0 0

Table 1: Percentage of timeouts and dead-ends per MAPF scenario. TO is the % of rollouts that results in timeouts. DE is the %
of rollouts that resulted in dead-ends. Bold values represent scenarios where the TO or DE value is greater than 90%, deeming
them less appropriate for solvers based on random sampling.

(3a) CBS Based: Recent optimal CBS variants presented
considerable speedups over basic CBS by considering
heuristic guidance for searching the CT (high-level search)
and advanced search algorithms, e.g., A∗ (Felner et al. 2018;
Li et al. 2019a; Boyarski et al. 2020) or IDA∗ (Boyarski et al.
2020). Moreover, a line of bounded suboptimal CBS vari-
ants presented even greater speedups by relaxing the original
optimality guarantee. Enhanced CBS (ECBS) (Barer et al.
2014) uses a focal search (Pearl and Kim 1982) for both the
high-level and low-level searches. Explicit Estimation CBS
(EECBS) (Li, Ruml, and Koenig 2021) further improves
the performance of ECBS by replacing the high-level focal
search with the explicit estimation search (Thayer and Ruml
2011), while retaining the guarantees of being a bounded
suboptimal framework. Li, Ruml, and Koenig (2021) also
propose EECBS+, an EECBS variant that incorporates en-
hancements like bypassing conflicts (Boyarski et al. 2015a),
prioritizing conflicts (Boyarski et al. 2015b), symmetry rea-
soning (Li et al. 2019c), weighted dependency graph heuris-
tic (Li et al. 2019a), and mutex propagation (Zhang et al.
2020).

(4) Sampling Based: Previous work considered using
Monte-Carlo based techniques for MAPF in different set-
tings than the one we consider (as presented later in Sec 2).
For example, Atzmon et al. (2020) proposed a Monte-Carlo
based verifier for robust MAPF, Skrynnik et al. (2024) use
Monte-Carlo tree search for anytime, decentralized, and
partially observable settings. In contrast to these previous
works, we provide a novel analysis of the goal-node dis-
tribution in CTs using Monte-Carlo rollouts followed by a
presentation and analysis of Monte-Carlo based methods for
the CT (high-level) search.

3 Goal Node Distribution in CTs
The performance of a random sampling approach is sensitive
to the goal-node distribution in the underlying state space.
For example, if goal nodes are relatively rare, then the prob-
ability of encountering a goal node in a single random roll-
out is low and, as a result, a Monte-Carlo approach is ex-
pected to be ineffective. Consequently, we begin our study
by empirically examining the goal node distribution in CTs
constructed from various common MAPF scenarios.

3.1 Experimental Setup
MAPF Scenarios: We evaluate 12 benchmark MAPF
maps1 following Okumura (2023) and 3 agent densities,
namely, sparse, medium and dense. The details of the
number of agents for each category are provided in Ap-
pendix A.1.

CT Parsing Details: We collect samples by performing
random Monte-Carlo rollouts on the CT. That is, starting
from the root CT node, one child node is randomly fol-
lowed until either (1) a goal node (having a valid solution)
is reached, (2) a dead-end node is reached, or (3) a timeout
limit (600 seconds) is exceeded. we sampled 10,000 inde-
pendent Monte-Carlo rollouts per scenario by randomizing
the agents’ start and goal vertices. We present the results on
the two types of CT defined in section 2.1, CT- and CT+.

Metrics: The rollout samples are reported and analyzed
for the following metrics: (1) solution cost (SIC), (2) rollout
runtime,2 and (3) (approximated) suboptimality. The subop-
timality is approximated, following (Okumura 2023), as the

1Following common notation in the literature, we use ‘map’ to
describe an undirected graph, G(V,E), per scenario.

2note that rollout time is correlated to rollout depth. Conse-
quently, we omit reporting the rollout depth.

ratio between the observed solution cost and the total dis-
tance of start-goal pairs (ignoring conflicts), which is defined
as

∑
i∈{1,2,··· ,m}dist(si, gi) where dist(u, v) is the shortest

path from vertex u to v. This approximated suboptimality
is an upper bound on the true optimality (Okumura 2023).
Further, the number of rollouts that result in dead-end nodes,
and those that result in timeouts are also reported.

3.2 Results: Dead-ends and Timeouts
Table 1 presents the percentage of unsuccessful rollouts, i.e.,
rollouts that resulted in either dead-ends or timeouts. The re-
sults suggest a trend where, as density increases for a given
map, rollouts are less likely to be successful (i.e., they tend
to result in dead-ends or timeouts). For instance, consider
the map ‘gallows templar’. In sparse scenarios all rollouts
on CT- were successful. However, as the agent density in-
creases, the number of unsuccessful rollouts also increases
(0% for sparse to 1.39% for medium to 46.78% for dense
instances). Furthermore, the results suggest that adding the
low-level enhancements (CT+) generally reduces the num-
ber of timeouts, but result in more frequent dead-ends (e.g.,
“Dense - maze” , “Dense - random 64”). We speculate that
this is because the enhanced low-level search introduces
constraints that block valid solutions, as apposed to the ba-
sic (optimal) low-level search (CT-). Overall, we observe a
promising trend where 0% of the sparse scenarios, 16.66%
of the medium-density scenarios and 66.66% of the dense
scenarios result in more than 90% unsuccessful rollouts on
CT-. However, for 5 dense scenarios, namely “maze”, “ran-
dom”, “room32”, “room 64 8”, “room”, we observe limit-
ing results where more than 90% of the rollouts are unsuc-
cessful (considering TO + DE). Such low success rates limit
the significances of the statistical analysis over the success-
ful samples. Consequently, such analysis for the 5 aforemen-
tioned dense scenarios is omitted.

3.3 Results: Goal Node Distribution
The reported dead-ends and timeouts analysis suggests that,
in some scenarios, the probability of sampling a valid so-
lution through a random rollout is fairly high. However, it
does not inform us regarding how good that solution is (with
respect to runtime or solution cost). Consequently, we turn
to provide a goal-node distribution analysis based on three
measurements, namely, (1) solution costs, (2) runtimes, and
(3) approximated suboptimality.

Fitting a parametric distribution. In order to fit and re-
port a parametric distribution we follow: (1) collect 10,000
independent, successful, rollout samples (goal nodes), (2)
define the empirical distribution by aggregating the samples
by frequencies (histogram), (3) fit a parametric distribution
to the empirical distribution using maximum likelihood es-
timation.3

Fitness measure. We use the Kolmogorov-Smirnov (K-S)
statistic (Massey 1951) to measure the goodness of fit for

3For fitting a distribution parameters we use the Python library
implementation by Cokelaer (2024).

each resultant distribution. The choice is justified by the non-
parametric nature, ease of interpretation, and independence
from distributional assumptions of the K-S statistic (Young
1977; Olea and Pawlowsky-Glahn 2008). To determine the
statistical cutoff threshold for a well-fit distribution, we use
the critical value table sourced from Massey (1951) with
N = 10, 000 and a common significance level of α = .01,
giving a statistic threshold value of d = 0.0163. In this case,
the threshold means that in “[α ∗ 100] percent of random
samples of size [N], the maximum absolute deviation be-
tween the sample cumulative distribution and the population
cumulative distribution will be at least [d]” (Massey 1951).
If d is above this value, we reject the null hypothesis that the
sample distribution is derived from the population distribu-
tion.

Results. Table 2 reports aggregated K-S statistic value (d)
over all the relevant scenarios (maps×densities with success
rate > 0.1) for 5 (of 19) best fitting distributions. Results
for the other 14 distributions are provided in Appendix B
Table 3. For each distribution, we report the mean (average
fit) and maximum (worst fit), K-S statistic (d) value over
all the scenarios. On top of that, we report the fraction of
scenarios within the K-S statistic threshold (as ‘FQ’).

Discussion. We see several well-fit distributions for so-
lution costs and approximated suboptimality. For example,
log-normal and beta distributions have the lowest mean val-
ues and highest fraction of scenarios above the K-S thresh-
old for CT-.

However, for CT+ we see some outliers for the beta dis-
tribution, thus we consider log-normal distribution for goal
costs to be most reliable. Similarly, we consider log-normal
distribution to be well-fitting for the suboptimality distribu-
tions. We see more outliers for the runtime distributions, re-
sulting in poor fitting in most scenarios (best maximum K-S
Statistic of .105 and maximum of 8/31 across scenarios re-
ported). Although none of the theoretical distributions seem
to fit any runtime histogram very well, the F distribution
could potentially be used to fit those sample distributions.

Figure 1 shows the best and worst distributions measured
by the K-S Statistic (per histogram as discussed above) for
CT-.4 These results further support that log-normal distribu-
tion can be a good fit for the solution cost and approximated
suboptimality and F distribution can be a reasonable fit for
runtime distribution.

3.4 Benefits of Fitting a Distribution
Assuming that a particular distribution, f , fits any of the true
goal node distribution histograms, enables theoretical state-
ments on the number of rollouts required to achieve a desired
level of performance. Specifically, assuming the cumulative
distribution function, Φ, for f is well defined, we can com-
pute the probability that a single sample is not larger than a
given value, T , as Φ(T). This value can be used to define the
number of samples needed to guarantee at least one sample
with value of T or lower with probability, p, as

4Results on CT+ are presented in Appendix B Figure 4.

(a) Best Fit Goal Cost (d = .008) (b) Best Fit Runtime (d = .008) (c) Best Fit Suboptimality (d = .006)

(d) Worst Fit Goal Cost (d = .048) (e) Worst Fit Runtime (d = .106) (f) Worst Fit Suboptimality (d = .398)

Figure 1: MC-CBS best and worst fitting MAPF scenarios for solution costs, runtime, and approximated suboptimality. d
denotes the K-S statistic value.

Method Dist. Goal Costs Runtimes Suboptimality
Max Mean SAT Max Mean SAT Max Mean SAT

CT-

Gamma 0.049 0.018 16/31 1.000 0.650 1/31 0.518 0.080 19/31
Log-Norm 0.048 0.018 16/31 0.138 0.045 8/31 0.398 0.063 20/31
Normal 0.083 0.022 13/31 0.472 0.250 0/31 0.290 0.075 1/31
F 0.050 0.021 14/31 0.106 0.041 8/31 0.252 0.039 20/31
Beta 0.040 0.015 19/31 0.331 0.112 1/31 1.000 0.077 20/31

CT+

Gamma 1.000 0.072 20/35 0.998 0.453 1/35 0.950 0.276 9/35
Log-Norm 0.047 0.016 22/35 0.281 0.070 7/35 0.420 0.038 20/35
Normal 0.075 0.027 14/35 0.510 0.275 0/35 0.284 0.085 0/35
F 0.052 0.022 12/35 0.229 0.051 11/35 0.619 0.074 16/35
Beta 1.000 0.071 22/35 0.765 0.172 1/35 1.000 0.217 8/35

Table 2: Comparison of Kolmogorov-Smirnov distances aggregated over the scenarios considering 5 different parametric dis-
tributions. The reported values include the mean K-S statistic value, the max value (demonstrating the worst fit), and the
Fit-Quality, “FQ”, which is the fraction of scenarios achieving a K-S statistic below 0.0163. Higher FQ values represent better
agreement between the empirical and parametric (fitted) distributions.

N ≥ log(1− p)

log(1− Φ(T))
(1)

Consequently, we say that a random sampling approach
with sufficient samples is probably-bounded suboptimal
when assuming an underlying suboptimality distribution.

For example, consider the “random 64-medium” scenario
from Figure 1. Assuming the suboptimality in this scenario
follows a log-normal distribution with µ = 0.87, σ = 0.071,
and Scale= 0.27, we can compute the number of samples,
N , required to guarantee a suboptimality of 11% with 0.99
probability. Solving Equation 1 for log-normal distribution
results in N = 92.50. Thus, if we sample 93 rollouts for the
given scenario, assuming the log-normal distribution fit with
the stated parameters, we will attain a solution within a sub-
optimality of 11% with 0.99 probability.

4 Monte Carlo CBS
The outcomes from our goal distribution analysis can be
seen as a justification for a simple yet efficient variant of
CBS, one that is based on random sampling. Specifically, we
propose a Monte Carlo CBS (MC-CBS) algorithm that per-
forms Monte Carlo rollouts on the CT. Note that since these
rollouts are independent of each other, MC-CBS can utilize
parallel computation hardware that is common in contempo-
rary multicore processors. The output of MC-CBS is aggre-
gated over all rollouts by selecting the best solution encoun-
tered among all rollouts. The performance of the rollouts can
be based on either solution cost or runtime, depending on the
user’s preference. We further propose an enhanced variant of
MC-CBS, referred to as MC-CBS+, which performs rollouts
on CT+. That is, MC-CBS+ incorporates state-of-the-art en-
hancements to CBS as presented by Li, Ruml, and Koenig
(2021). Specifically, the following improvements are incor-
porated: bypassing conflicts (Boyarski et al. 2015a), target
reasoning (Li et al. 2021), corridor reasoning (Li et al. 2021),
rectangle reasoning (Li et al. 2019c), and mutex propaga-

tion (Zhang et al. 2020). Additionally, MC-CBS+ uses focal
search at the low level, following (Barer et al. 2014).

Next, we discuss the theoretical properties of MC-CBS
and MC-CBS+. First, we provide formal definitions of prob-
abilistic completeness (PC) and asymptotic optimality (AO)
for sampling-based methods. These definitions follow from
the path planning literature (Kleinbort et al. 2018).

Definition 1 (Probabilistic Completeness (PC)). A
sampling-based algorithm ALG(p,N) is probabilistically
complete if, for any solvable problem p, the following holds:

lim
N→∞

Pr(ALG(p, N) returns a valid solution) = 1,

where N is the number of samples used by ALG.

Definition 2 (Asymptotic Optimality (AO)). A sampling-
based algorithm ALG(p,N) is asymptotically optimal if,
for any solvable problem p, the probability that the cost
C(ALG(p,N)) of the solution returned by the algorithm is
optimal (c∗) approaches 1 as the number of samples, N , ap-
proaches infinity, i.e., the following holds:

Pr
(

lim
N→∞

C(ALG(p,N)) = c∗
)
= 1,

Note, it is trivial that if an algorithm is AO then it is also
PC. We show that MC-CBS is AO and MC-CBS+ is PC.

Proposition 1. MC-CBS is asymptotically optimal.

Proof. Choosing CT- nodes in best-first order produces an
optimal solution to any solvable MAPF problem (Theorem
1 in Sharon et al. (2015)). That is, a best-first search is guar-
anteed to expand an optimal goal node, ng . Let τ be the
root-to-leaf CT- trajectory leading to ng . When performing
random rollouts on the CT-, every root-to-leaf trajectory has
a non-zero probability to be sampled. Hence, as N → ∞, τ
will be sampled with probability = 1.

Proposition 2. MC-CBS+ is probabilistically complete.

(a) Success Rate (b) Runtime (c) Suboptimality

Figure 2: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM* with increasing number of agents on room-64-
64-8. 96 rollouts are used for MC-CBS and MC-CBS+. Runtime plot is on logarithmic scale to accommodate higher range of
runtime values on single plot.

Proof. MC-CBS+ is motivated by EECBS+ and use the
same enhancements, thus both generate similar CT+. As
EECBS+ is a complete algorithm (Li, Ruml, and Koenig
2021), EECBS+ produces a valid solution for any solvable
MAPF problem. That is, EECBS+ is guaranteed to expand a
goal node, ng . Let τ be the root-to-leaf CT+ trajectory lead-
ing to ng . When performing random rollouts on the CT+,
every root-to-leaf trajectory has a non-zero probability to be
sampled. Hence, as N → ∞, τ will be sampled with proba-
bility = 1.

5 Empirical Evaluation
MAPF solvers were allowed a timeout limit of 600 seconds.
MAPF Scenarios: The same scenarios discussed in Sec-
tion 3.1 are used in this section.

MC-CBS and MC-CBS+ Details: All of the rollouts for
both, MC-CBS and MC-CBS+, are executed in parallel.
That is, each rollout has a independent timeout limit of 600
seconds and the best rollouts are used for comparison. We
set the number of rollouts for both variants to 96 (N = 96)
following state-of-the-art multicore processors having 96
cores (e.g., AMD Ryzen™ Threadripper™ PRO 7995WX)
unless stated otherwise. We report two runtime and subopti-
mality values for each of the variants: (1) values correspond-
ing to the fastest (CPU time) rollout of the N rollouts (re-
ferred to as MC-CBS R, MC-CBS+ R), and (2) values cor-
responding to the rollout with the best solution cost (referred
to as MC-CBS S, MC-CBS+ S). While (1) is relevant for
time-sensitive applications (returning a solution as soon as
the first rollout successfully terminates), (2) is more relevant
for quality-sensitive applications (returning the best sampled
solution).
Baseline Details: A brief comparison between EECBS+,
MC-CBS, LaCAM* (Okumura 2024) and MC-CBS+ is
provided in this section. EECBS+ and MC-CBS+ use a sub-
optimality factor of w = 5 following Okumura (2023) for
the low-level search. For LaCAM* we pick the first solution
generated. We omit results for eMDD-SAT (Surynek et al.
2018), ECBS (Barer et al. 2014), BCP-7 (Lam et al. 2019)

as EECBS+ was shown to outperform (in terms of either
success rate, solution quality, runtime) all of them by Li,
Ruml, and Koenig (2021). Similarly, as LaCAM* (Oku-
mura 2024) outperforms other MAPF solvers like PIBT
and PIBT+ (Okumura et al. 2022) they are excluded.
Note, EECBS+ has stronger theoretical guarantees than
MC-CBS and MC-CBS+, while LaCAM* has an eventual
optimal solution cost guarantee. We are unaware of any
baseline MAPF solvers with probabilistic (Section 3.4)
and asymptotic optimality (Proposition 1) guarantees for a
rigorous comparison to MC-CBS and MC-CBS+.

Metrics: We use the same metrics as Okumura (2023).
Namely, (1) Success rate: Success rate is aggregated across
the instances for a given MAPF scenario. For MC-CBS and
MC-CBS+ an instance is said to be solved if any of the roll-
outs (out of N) returns a solution. (2) Runtime: The median
of runtimes recorded over instances. If a solver fails to solve
an instance, the timeout is recorded as the runtime for that
instance. (3) Suboptimality: A subset of problems is gen-
erated which could be solved by all of the MAPF solvers
(intersection over all solved problems). The median of the
approximated suboptimality over this subset of problems is
reported. If a solver is not able to solve any instances it was
excluded from the list of solvers used to find the intersection
of solved problems.

5.1 Comparison with Baselines
Figure 2 shows the comparison of all the solvers on a repre-
sentative map, “room-64-64-8”, with increasing numbers of
agents. The results show that LaCAM* is the best perform-
ing algorithm as it can solve all instances of 500 agents on
the map while being faster and having better upper bound
on suboptimality. Amongst others, we can see that MC-
CBS+ has higher success rate and is faster than MC-CBS
and EECBS+ while having comparable suboptimality to
EECBS+. On the other hand, MC-CBS has better subopti-
mality values, but has the lowest success rate and slowest
runtimes. We also see that both variants (S and R) have
similar performance for runtime as well as suboptimality
(for MC-CBS and MC-CBS+).

Su
cc

es
s

R
at

e
R

un
tim

e
(s

ec
)

Su
bo

pt
.U

B

(a) Sparse (b) Medium (c) Dense

Number of Rollouts

MC-CBS
MC-CBS+

MC-CBS_S
MC-CBS+_S

MC-CBS_R
MC-CBS+_R

EECBS+
LaCAM*

Figure 3: Performance of MC-CBS and MC-CBS+ with an increasing number of rollouts on map “warehouse-20-40-10-2-1”.
Runtime plot is on logarithmic scale to accommodate higher range of runtime values on single plot.

Results for all of the other MAPF scenarios are provided
in Appendix C (Table 4 and Table 5). When comparing to
EECBS+, MC-CBS has the best performance in 4/36 sce-
narios. The results further indicate that MC-CBS+ is the
best performing method in 16/36 scenarios, while remain-
ing comparable with MC-CBS and EECBS+ in another 6.
In some maps like “room-64-64-16”, “gallowstemplar n”,
“maze-32-32-2” and “room-64-64-8”. EECBS+ seems to
perform best, but only for medium/dense agent densities.

5.2 Rollout Count vs. Performance
Figure 3 shows the performance of MC-CBS and MC-CBS+
with increasing number of rollouts. As expected, the results
generally improve with the increasing the number of roll-
outs. MC-CBS has 100% success rate for sparse even with
a single rollout. However, the number increases to 16 for

dense scenarios.

6 Conclusion
This paper examines the distribution of goal nodes within
the high-level Constraint Tree (CT) of Conflict-Based
Search (CBS), a key framework for Multi-Agent Pathfind-
ing. The study focuses on (1) solution quality (as sum-of-
costs), (2) runtime, (3) success rate, and (4) approximated
suboptimality. Results show that random rollouts on the
CT yield nearly 100% successful rollouts (ending in a goal
node) in sparse agent densities and about 84% in medium
densities. The reported goal node distributions can be fit-
ted to models that potentially offer probabilistic guarantees
on the number of samples needed to achieve a desired solu-
tion quality with a desired probability value. Given these un-

derstandings, we propose a simple random rollout-based al-
gorithm, denoted Monte-Carlo Conflict-Based Search (MC-
CBS) which might be effective in such scenarios. MC-CBS
has two main benefits (1) it is asymptotically optimal, (2)
it can utilize parallel computation. Additionally, this pa-
per introduces an enhanced version, MC-CBS+, which in-
corporates state-of-the-art improvements to the low-level
search. While MC-CBS+ lacks asymptotic optimality, it de-
livers significant computational speedups in dense scenarios.
Comparative evaluations with state-of-the-art baselines indi-
cate that MC-CBS+ is competitive or better than EECBS+,
a bounded suboptimal algorithm in sparse and medium den-
sities. On the other hand, MC-CBS+ is outperformed by a
state-of-the-art eventually optimal solver, LaCAM*, in most
cases. Nonetheless, we assert that the findings presented in
this paper indicate that sampling-based approaches have the
potential to effectively enhance both existing and future CBS
variants (e.g., AlphaGo (Silver et al. 2016)-like techniques
on CT). Thus we believe that sampling-based approaches
should be viewed favorably by the MAPF community.

References
Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020. Probabilistic robust multi-agent path find-
ing. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 30, 29–37.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of
the international symposium on combinatorial Search, vol-
ume 5, 19–27.
Boyarski, E.; Felner, A.; Harabor, D.; Stuckey, P. J.; Cohen,
L.; Li, J.; and Koenig, S. 2020. Iterative-deepening conflict-
based search. In Proceedings of the Twenty-Ninth Interna-
tional Conference on International Joint Conferences on Ar-
tificial Intelligence, 4084–4090.
Boyarski, E.; Felner, A.; Sharon, G.; and Stern, R. 2015a.
Don’t split, try to work it out: Bypassing conflicts in multi-
agent pathfinding. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 25,
47–51.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel, O.;
Tolpin, D.; and Shimony, E. 2015b. ICBS: The improved
conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of the International Symposium on Combi-
natorial Search, volume 6, 223–225.
Cokelaer, T. 2024. cokelaer/fitter: v1.7.1.
Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2: 477–521.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. S.; and Koenig, S. 2018. Adding heuristics to conflict-
based search for multi-agent path finding. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 28, 83–87.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.

IEEE Transactions on Systems Science and Cybernetics,
4(2): 100–107.
Kleinbort, M.; Solovey, K.; Littlefield, Z.; Bekris, K. E.; and
Halperin, D. 2018. Probabilistic completeness of RRT for
geometric and kinodynamic planning with forward propa-
gation. IEEE Robotics and Automation Letters, 4(2): i–vii.
Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial intelligence, 27(1):
97–109.
Lam, E.; Le Bodic, P.; Harabor, D. D.; and Stuckey, P. J.
2019. Branch-and-cut-and-price for multi-agent pathfind-
ing. In International Joint Conference on Artificial Intelli-
gence 2019, 1289–1296. Association for the Advancement
of Artificial Intelligence (AAAI).
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In IJCAI, volume 2019, 442–
449.
Li, J.; Gong, M.; Liang, Z.; Liu, W.; Tong, Z.; Yi, L.; Morris,
R.; Pasearanu, C.; and Koenig, S. 2019b. Departure schedul-
ing and taxiway path planning under uncertainty. In AIAA
Aviation 2019 Forum, 2930.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021. Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301:
103574.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019c. Symmetry-breaking constraints for grid-based multi-
agent path finding. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, 6087–6095.
Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 35, 12353–12362.
Ma, H.; Li, J.; Kumar, T. S.; and Koenig, S. 2017. Life-
long Multi-Agent Path Finding for Online Pickup and De-
livery Tasks. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, 837–845.
Massey, F. J. 1951. The Kolmogorov-Smirnov Test for
Goodness of Fit. Journal of the American Statistical As-
sociation, 46(253): 68–78.
Okoso, A.; Otaki, K.; and Nishi, T. 2019. Multi-agent path
finding with priority for cooperative automated valet park-
ing. In 2019 IEEE intelligent transportation systems confer-
ence (ITSC), 2135–2140. IEEE.
Okumura, K. 2023. LaCAM: Search-Based Algorithm for
Quick Multi-Agent Pathfinding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, 11655–
11662.
Okumura, K. 2024. Engineering LaCAM*: Towards Real-
time, Large-scale, and Near-optimal Multi-agent Pathfind-
ing. In Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems, 1501–1509.
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2022. Priority inheritance with backtracking for itera-
tive multi-agent path finding. Artificial Intelligence, 310:
103752.

Olea, R.; and Pawlowsky-Glahn, V. 2008. Kol-
mogorov–Smirnov test for spatially correlated data.
Stochastic Environmental Research and Risk Assessment,
23: 749–757.
Pearl, J.; and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE transactions on pattern analysis and ma-
chine intelligence, (4): 392–399.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence, 219: 40–66.
Silver, D. 2005. Cooperative pathfinding. In Proceedings of
the AAAI conference on artificial intelligence and interactive
digital entertainment, volume 1, 117–122.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Skrynnik, A.; Andreychuk, A.; Yakovlev, K.; and Panov, A.
2024. Decentralized Monte Carlo Tree Search for Partially
Observable Multi-Agent Pathfinding. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38,
17531–17540.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, 151–158.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2018.
Sub-optimal SAT-based approach to multi-agent path-
finding problem. In Proceedings of the International Sym-
posium on Combinatorial Search, volume 9, 99–105.
Thayer, J. T.; and Ruml, W. 2011. Bounded suboptimal
search: a direct approach using inadmissible estimates. In
Proceedings of the Twenty-Second international joint con-
ference on Artificial Intelligence-Volume Volume One, 674–
679.
Wagner, G.; and Choset, H. 2015. Subdimensional expan-
sion for multirobot path planning. Artificial intelligence,
219: 1–24.
Young, I. T. 1977. Proof without prejudice: use of the
Kolmogorov-Smirnov test for the analysis of histograms
from flow systems and other sources. Journal of Histochem-
istry & Cytochemistry, 25(7): 935–941. PMID: 894009.
Zhang, H.; Li, J.; Surynek, P.; Koenig, S.; and Kumar, T.
K. S. 2020. Multi-Agent Path Finding with Mutex Propaga-
tion. Proceedings of the International Conference on Auto-
mated Planning and Scheduling, 30(1): 323–332.

A Experimental Setup
A.1 Agent Density Classification
The evaluation is performed on three different agent den-
sities for each map, based on the agent densities observed
in the empirical analysis from Okumura (2023). “Sparse”
instances contain exactly 50 agents. “Dense” instances con-
tain the maximum amount of agents where EECBS is able
to solve at least one instance in Okumura (2023) or 500
agents, whichever is lower.5 “Medium” density instances
contain half the number of agents as in the dense instances,
rounded up in 50-agent intervals. One caveat is the Maze
map where EECBS was only able to solve up to 100 agents.
To keep intervals evenly spaced for analysis, dense maze in-
stances were defined to have 150 agents. All experiments
were coded in C++ and run on Linux CentOS 7 compute
nodes with 48 total Intel Xeon 6248R processors and a mem-
ory limit of 360GB for each node (7.5GB per processor).
Parallel computation was handled by an external Python
script.

B Goal Node Distribution: Additional
Results

This section shows additional results for the goal node dis-
tribution of MC-CBS+. Specifically, results over all 19 dis-
tributions are presented in Table 3. Figure 4 shows best and
worst distributions across scenarios for CT+.

C Empirical Evaluation: Additional Results
This section provides an extended evaluation. Figure 4 to
Figure 15 (both numbers inclusive) show plots of success
rate, runtime, and suboptimality for each of the scenarios
for MC-CBS, MC-CBS+, EECBS+, and LaCAM with in-
creasing rollouts (for MC-CBS and MC-CBS+).

5Note that the success rate in our results are not comparable
with those reported by Okumura (2023) because we use a larger
timeout threshold.

(a) Best Fit Goal Cost (d = .007) (b) Best Fit Runtime (d = .007) (c) Best Fit Suboptimality (d = .006)

(d) Worst Fit Goal Cost (d = .047) (e) Worst Fit Runtime (d = .229) (f) Worst Fit Suboptimality (d = .420)

Figure 4: Constraint Tree Analysis MC-CBS+

Figure 5: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 1/11

Figure 6: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 2/11

Figure 7: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 3/11

Figure 8: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 4/11

Figure 9: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 5/11

Figure 10: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 6/11

Figure 11: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 7/11

Figure 12: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 8/11

Figure 13: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 9/11

Figure 14: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 10/11

Figure 15: Comparison between MC-CBS, MC-CBS+, EECBS+, and LaCAM with increasing rollouts for MC-CBS and MC-
CBS+. 11/11

Method Dist. Goal Costs Runtimes Suboptimality
Max Mean SAT Max Mean SAT Max Mean SAT

CT-

Cauchy 0.121 0.084 0/35 0.230 0.160 0/35 0.367 0.135 0/35
Chi2 1.000 0.266 2/35 0.999 0.343 0/35 0.816 0.329 7/35
Expon. 0.393 0.353 0/35 0.514 0.236 0/35 0.469 0.296 0/35
Expon.-Pow. 1.000 0.995 0/35 1.000 0.575 0/35 0.540 0.155 0/35
Gamma 0.049 0.018 16/31 1.000 0.650 1/31 0.518 0.080 19/31
Log-Norm 0.048 0.018 16/31 0.138 0.045 8/31 0.398 0.063 20/31
Normal 0.083 0.022 13/31 0.472 0.250 0/31 0.290 0.075 1/31
Rayleigh 0.245 0.187 0/35 0.554 0.260 0/35 0.352 0.148 0/35
Uniform 0.507 0.264 0/35 0.988 0.718 0/35 0.715 0.433 0/35
Alpha 0.060 0.025 3/35 0.135 0.047 5/35 0.289 0.067 10/35
F 0.050 0.021 14/31 0.106 0.041 8/31 0.252 0.039 20/31
Beta 0.040 0.015 19/31 0.331 0.112 1/31 1.000 0.077 20/31
Weibull 0.053 0.021 12/35 0.684 0.200 0/35 0.347 0.077 1/35
Pareto 0.612 0.409 0/35 0.613 0.252 0/35 0.469 0.288 0/35
T 0.086 0.022 11/35 0.231 0.143 0/35 0.340 0.077 3/35
Logistic 0.063 0.030 0/35 0.416 0.193 0/35 0.312 0.071 0/35
Erlang 0.044 0.018 18/35 0.999 0.216 0/35 0.583 0.083 18/35
Chi 1.000 0.598 2/35 1.000 0.422 0/35 0.476 0.126 13/35

CT+

Cauchy 0.109 0.085 0/35 0.439 0.157 0/35 0.500 0.117 0/35
Chi2 1.000 0.325 4/35 0.548 0.215 1/35 0.918 0.420 2/35
Expon. 0.411 0.353 0/35 0.796 0.316 0/35 0.509 0.304 0/35
Expon.-Pow. 1.000 0.997 0/35 0.874 0.396 0/35 0.643 0.360 0/35
Gamma 1.000 0.072 20/35 0.998 0.453 1/35 0.950 0.276 9/35
Log-Norm 0.047 0.016 22/35 0.281 0.070 7/35 0.420 0.038 20/35
Normal 0.075 0.027 14/35 0.510 0.275 0/35 0.284 0.085 0/35
Powerlaw 0.390 0.322 0/35 0.577 0.409 0/35 0.540 0.382 0/35
Rayleigh 0.264 0.185 0/35 0.597 0.321 0/35 0.353 0.132 0/35
Uniform 0.477 0.302 0/35 0.998 0.761 0/35 0.915 0.563 0/35
Alpha 0.047 0.022 14/35 0.413 0.075 7/35 0.562 0.100 10/35
F 0.052 0.022 12/35 0.229 0.051 11/35 0.619 0.074 16/35
Beta 1.000 0.071 22/35 0.765 0.172 1/35 1.000 0.217 8/35
Weibull 0.056 0.026 3/35 0.819 0.224 0/35 0.820 0.223 0/35
Pareto 0.617 0.429 0/35 0.389 0.203 0/35 0.509 0.304 0/35
T 0.819 0.052 12/35 0.347 0.128 1/35 0.262 0.061 1/35
Logistic 0.055 0.029 1/35 0.454 0.207 0/35 0.269 0.057 0/35
Erlang 0.342 0.027 23/35 0.939 0.219 1/35 0.781 0.310 9/35
Chi 1.000 0.776 0/35 0.960 0.270 0/35 0.591 0.281 4/35

Table 3: Comparison of Kolmogorov-Smirnov distances aggregated over the scenarios for 19 distributions. The reported values
include the mean K-S statistic value, the max value (demonstrating the worst fit), and “SAT”, the fraction of scenarios achieving
a K-S statistic value that is below 0.0163, representing a good fit.

Map Density Metric MC-CBS R MC-CBS S MC-CBS+ R MC-CBS+ S EECBS+

orz900d

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.012 1.000 1.000 1.000 1.000
runtime 0.883 1.215 1.460 1.751 1.697

medium
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.021 1.011 1.001 1.001 1.001
runtime 28.898 41.437 7.624 8.646 10.722

dense
rate 0.520 0.520 1.000 1.000 1.000

subopt 1.021 1.015 1.001 1.001 1.001
runtime 383.338 472.575 17.584 19.372 27.292

maze-32-32-2

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.247 1.227 1.225 1.225 1.250
runtime 0.777 0.911 1.715 1.927 1.475

medium
rate 0.960 0.960 0.920 0.920 1.000

subopt 1.599 1.586 1.990 1.909 2.094
runtime 14.725 16.488 46.235 92.706 50.446

dense
rate 0.200 0.200 0.400 0.400 0.720

subopt 2.494 2.494 2.870 2.870 3.007
runtime 600.000 600.000 600.000 600.000 433.838

warehouse-20-40-10-2-2

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.001 1.000 1.000 1.000 1.000
runtime 0.022 0.026 0.057 0.061 0.075

medium
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.033 1.020 1.001 1.001 1.001
runtime 4.551 7.331 1.159 1.250 1.296

dense
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.062 1.050 1.001 1.001 1.001
runtime 69.865 155.098 4.170 4.522 4.688

random-32-32-20

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.072 1.043 1.041 1.041 1.041
runtime 0.020 0.028 0.010 0.010 0.010

medium
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.319 1.302 1.281 1.281 1.300
runtime 1.697 1.830 0.463 0.484 0.588

dense
rate 0.680 0.680 1.000 1.000 1.000

subopt 1.992 1.992 2.016 1.931 2.024
runtime 208.277 208.277 14.045 18.898 16.191

room-64-64-8

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.068 1.063 1.066 1.066 1.066
runtime 0.476 0.512 0.052 0.052 0.069

medium
rate 1.000 1.000 0.960 0.960 1.000

subopt 1.183 1.177 1.177 1.177 1.182
runtime 7.830 7.863 4.722 4.826 5.302

dense
rate 1.000 1.000 0.960 0.960 1.000

subopt 1.335 1.33 1.374 1.374 1.367
runtime 52.573 55.354 22.733 23.482 22.212

random-64-64-20

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.027 1.005 1.005 1.005 1.006
runtime 0.016 0.024 0.014 0.014 0.014

medium
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.123 1.11 1.049 1.049 1.049
runtime 4.058 4.751 0.318 0.322 1.263

dense
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.401 1.398 1.201 1.201 1.201
runtime 324.062 355.159 14.171 17.823 14.866

Table 4: Comparison between MC-CBS, MC-CBS+ and EECBS+. 96 rollouts are used for MC-CBS and MC-CBS+, Table 1/2

Map Density Metric MC-CBS R MC-CBS S MC-CBS+ R MC-CBS+ S EECBS+

room-32-32-4

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.191 1.181 1.199 1.199 1.201
runtime 0.122 0.138 0.078 0.080 0.106

medium
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.496 1.496 1.627 1.622 1.616
runtime 2.956 2.985 1.577 1.882 1.726

dense
rate 0.040 0.040 0.880 0.880 1.000

subopt 2.923 2.923 2.587 2.587 2.641
runtime 600.000 600.000 64.260 74.990 62.700

room-64-64-16

sparse
rate 1.000 1.000 0.920 0.920 1.000

subopt 1.039 1.028 1.028 1.028 1.030
runtime 0.153 0.253 0.069 0.069 0.085

medium
rate 1.000 1.000 0.960 0.960 1.000

subopt 1.189 1.176 1.296 1.296 1.300
runtime 50.708 56.594 6.115 6.702 8.745

dense
rate 0.040 0.040 0.760 0.760 0.640

subopt nan nan nan nan 2.013
runtime 600.000 600.000 99.435 105.582 148.242

ost003d

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.010 1.002 1.002 1.002 1.002
runtime 0.109 0.145 0.064 0.065 0.066

medium
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.039 1.025 1.014 1.014 1.014
runtime 21.831 44.329 1.406 1.448 1.699

dense
rate 0.000 0.000 0.960 0.960 0.960

subopt nan nan nan nan 1.100
runtime 600.000 600.000 68.783 70.238 84.920

warehouse-20-40-10-2-1

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.009 1.000 1.000 1.000 1.000
runtime 0.032 0.033 0.057 0.058 0.064

medium
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.062 1.045 1.003 1.003 1.003
runtime 6.411 19.047 0.988 1.035 1.334

dense
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.116 1.103 1.008 1.008 1.009
runtime 283.248 438.333 3.991 4.175 5.179

brc202d

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.007 1.001 1.001 1.001 1.001
runtime 0.381 0.521 0.277 0.366 0.295

medium
rate 0.840 0.840 1.000 1.000 1.000

subopt 1.027 1.020 1.004 1.004 1.004
runtime 196.502 405.75 3.895 4.286 5.106

dense
rate 0.000 0.000 1.000 1.000 0.960

subopt nan nan nan nan 1.008
runtime 600.0 600.0 13.771 14.925 18.923

gallowstemplar n

sparse
rate 1.000 1.000 1.000 1.000 1.000

subopt 1.028 1.013 1.008 1.008 1.007
runtime 0.125 0.179 0.055 0.057 0.060

medium
rate 0.960 0.960 1.000 1.000 1.000

subopt 1.052 1.044 1.031 1.031 1.029
runtime 7.830 13.311 0.770 0.814 0.770

dense
rate 0.120 0.120 1.000 1.000 1.000

subopt 1.122 1.122 1.101 1.101 1.134
runtime 600.000 600.000 14.866 16.015 12.860

Table 5: Comparison between MC-CBS, MC-CBS+ and EECBS+. 96 rollouts are used for MC-CBS and MC-CBS+, Table 2/2

