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Abstract. We present a general control framework that is based entirely
on system performance constraints. This nonlinear, discontinuous control
results from solving a linear matrix equation without iteration at each
instant of time. No cost function, or time horizon, or linearization is in-
volved in obtaining the control actions. The methodology is applied to
controlling multi-agent navigation robots subject to collisions. Collision
avoidance performance and control structure (centralized or decentral-
ized) are realized purely by whether the constraint is defined on vector
norms or vector components and by whether the constraint is partitioned
between colliding agents. Numerical and analytical results are presented
to compare three different constraint formulations, demonstrating the ef-
fectiveness of the control approach.
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1 Introduction

As we enter an era of autonomy and artificial intelligence, autonomous and in-
telligent robots in the air, on the ground, and in the water are gaining increasing
attention in transporting cargoes and humans in a diverse range of applications,
such as autonomous delivery and transportation [1]. One critical capability of
teams of such robots is to guarantee safety through collision avoidance, which
attracts ongoing research efforts in the robotics and controls community [2].

Existing methods for multi-agent robot collision avoidance include velocity
obstacles (VO) [3], artificial potential fields (APF) [4], mixed-integer programs
(MIP) [5], control barrier functions (CBF) [6], and reinforcement-learning (RL)
based methods [7].

With certain levels of success achieved, existing approaches may suffer from
shortcomings in certain environments. For examples, VO methods (e.g., [3]) as-
sume that robots avoid collision at constant speeds with no solution uniqueness
guarantee; APF methods (e.g., [4]) assume physically unrealistic control actions
for imminent crashes, with solutions prone to local optima; MIP (e.g., [5]) be-
come computationally intractable when the number of agents is significant; CBF
approaches (e.g., [6]) may not be computationally efficient when the end points
do not remain static in solving the constrained optimization problem; while RL-
based methods (e.g., [7]) can consume enormous computational resources yet may
still not capture some outlier scenarios in the training datasets and may have a
large number of physically meaningless control parameters.
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In this article, we present a general control methodology that addresses the
limitations of the existing methods by 1) having no premature assumptions on
avoidance speeds, 2) having a relatively small number of control parameters that
are physically meaningful, 3) having a solution uniqueness guarantee, and 4)
having simple and efficient computations for control actions.

The methodology is based on extending Gauss’s principle of least constraint
(GPLC) [8] with dynamic identification, incorporation, and stabilization of ac-
tive inequality constraints. The method is then applied to the collision avoidance
control of multi-agent navigation robots. Constraints formulated on either vector
norms or vector components and whether the interacting constraints are parti-
tioned or not dictate the performance and structure of the control.

This paper is organized as follows. Section 2 reviews GPLC and presents
GPLC control in an abstract and general manner. Then, Section 3 models the
collision control of multi-agent navigation systems in three different constraint
formulations. Next, Section 4 numerically and analytically compares the three
formulations by investigating a baseline case in which two robots are under head-
on collision. Finally, conclusions and future work are summarized in Section 5.

2 Methodology

2.1 Gauss’s Principle of Least Constraint (GPLC)

In 1829, Gauss presented the principle of least constraint in his 4-page seminal
paper [8]. We now review GPLC from a constrained optimization perspective.

Consider a nonlinear, time-varying dynamical system free of constraints whose
equations of motion are expressed as

M(q, t)a = f , (1)

where M ∈ RNq×Nq is the symmetric positive definite (SPD) mass matrix that
is dependent on Nq coordinate positions q ∈ RNq and time t, a ∈ RNq denotes
the unconstrained accelerations, and f ∈ RNq is the collection of all forces that
do not result from a set of equality constraints g(q, q̇, t) = c, where g ∈ RNg are
the (at-least) twice-differentiable functions that constrain the relations among
the coordinate positions q and the coordinate velocities q̇, and c ∈ RNg denotes
constant thresholds for the constraint functions g. In the context of navigation
control of multi-agent robots, g describes the desired system behaviors such as
path following and collision avoidance and is thus a function of only q and t.

Taking the second-order time derivative of g(q, t)− c = 0 yields a system of
equations that is linear in the coordinate accelerations q̈

Aq̈ = b(q, q̇, t) , (2)

where A ∈ RNg×Nq is the Jacobian matrix.
Note that the unconstrained equations of motion (1) is equivalent to the

solution of the unconstrained quadratic programming

min
q̈

1

2
q̈TMq̈− f Tq̈ (3)
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and that satisfying the constraint equations g = c requires that q̈ satisfies (2).
We can therefore express the constrained equations of motion as a constrained
quadratic programming by noting (1) [10]

min
q̈

1

2
q̈TMq̈− f Tq̈ s.t. Aq̈ = b (4)

⇐⇒ max
λ

min
q̈

1

2
q̈TMq̈− f Tq̈+ λT(Aq̈− b) (5)

⇐⇒ max
λ

min
q̈

1

2
q̈TMq̈− q̈Tf +

1

2
aTMa+ λT(Aq̈− b) (6)

⇐⇒ max
λ

min
q̈

1

2
(q̈− a)TM(q̈− a) + λT(Aq̈− b) (7)

where λ ∈ RNg denotes the Lagrange multipliers that correspond to active con-
straints. Solving (5) yields a Karush-Kuhn-Tucker (KKT) system[

M AT

A 0

] [
q̈
λ

]
=

[
f
b

]
, (8)

which is a linear matrix equation. We may regard f c ≜ −ATλ as a control force
since it enforces the equality constraints g at a differentiated level. Equation (7)
takes the form of GPLC. Therefore, we call (8) the GPLC KKT system.

2.2 Udwadia-Kalaba Equations

In 1992, Udwadia and Kalaba derived an analytical solution to GPLC (7) for the
constrained accelerations q̈ and the force of constraints f c [9]. In their approach,
Lagrange multipliers λ are eliminated, yielding the closed-form expressions

q̈ = a+M-1K(b−Aa) ,

f c = K(b−Aa) = KA(q̈− a) ,
(9)

whereK(q, q̇, t) = M1/2(AM−1/2)+, and the superscript + represents the Moore-
Penrose pseudo-inverse. Therefore, obtaining the constraint force f c is more com-
putationally involved than that of the KKT-based approach (8). Furthermore,
since the Lagrange multipliers are eliminated, the relative contribution of a spe-
cific constraint to the control actions cannot be determined.

2.3 Active Constraint Stabilization

When the dynamical system is subjected to inequality constraints, both the
GPLC and the Udwadia-Kalaba (U-K) equations become inapplicable. Further-
more, the inevitable errors due to estimation, measurement, and/or numerical
integration would drift the state trajectories away from the constraint manifolds.
Zhang and Gavin [10] proposed an active-set method that dynamically identifies,
incorporates, and stabilizes active inequality constraints.

Suppose the system is under the inequality constraints

gineq(q, t) ≤ c , (10)
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where c denotes constant thresholds. At each time instant, a subset of gineq has
their function values exceeding the corresponding thresholds. This subset of active
inequality constraints, along with the equality constraints, comprises the active
constraint set and is treated as equality constraints

g = c (11)

at the present time instant. Note that g and Ng take active inequality constraints
into consideration in the present and following sections.

For any linearly independent element of g ∈ g, we enforce a second-order
oscillator

g̈ + 2ζωġ + ω2(g − c) = 0 , (12)

where ω and ζ are the natural frequency and damping ratio of the constraint
oscillator and thus can be viewed as control parameters.

We apply the second-order constraint stabilization to all active g and write it
into a compact form

A(q, t) q̈ = b̂(q, q̇, t) , (13)

where b̂ now contains terms involving ω and ζ.
Substituting the stabilized constraints (13) in the place of the differentiated

constraints (2) into the GPLC objective (5) and re-applying the KKT conditions,
we arrive upon [

M AT

A 0

] [
q̈
λ

]
=

[
f

b̂

]
. (14)

When g becomes inactive (i.e., g ≤ c) due to the imposed stabilization scheme,
the contribution of g to the control actions vanishes, thus resulting in a discon-
tinuous control rule.

Unlike other optimization-based control methods, where an artificial cost func-
tion is minimized over a time horizon subject to constraints, GPLC control is
defined entirely by the active subset of a full set of inequality constraints at any
instant. The objective function in deriving the GPLC control is the quadratic
form of the unconstrained dynamics Ma = f , which is automatically satisfied
at all times according to physical laws. Table 1 summarizes some main differ-
ences between optimization-based control methods found in the literature and
the GPLC control approach.

Table 1: Feature comparison between optimization-based control and GPLC con-
trol

Feature Optimization-based GPLC

involves a time horizon ✓ ✗

has a cost function ✓ ✗

relaxed constraints ✗ ✓

physically meaningful control parameters ✗ ✓

involves iterative solution ✓ ✗

involves linearization ✓ ✗

solution uniqueness guarantee ✗ ✓
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3 Collision Control of Multi-Agent Navigation Robots

In this section, various constraint formulations are presented to achieve different
control structures (i.e., centralized vs. decentralized) and control performance on
collision avoidance (e.g., deadlock vs. deadlock resolution).

We model N robots as two-dimensional (2-D) double integrators to demon-
strate the fundamental performance of the proposed GPLC control. Each robot
i, i = 1, . . . , N , is coordinated at pi(t) = [xi(t) yi(t)]

T ∈ R2 with a mass mi and
is subjected to the unconstrained equations of motion[

mi 0
0 mi

] [
ẍi

ÿi

]
=

[
fx
i

fy
i

]
, (15)

where fx
i and fy

i are the external forces on agent i along X and Y axis.
We investigate the rudimentary case for collision avoidance in a 2-D multi-

agent robotic system, namely, two robots subject to head-on collision under their
maximum attainable speeds. This is the worst-case scenario for the two-robot
setting. Each robot is enclosed within a virtual buffer of different shapes, which
is determined by the constraint formulation. If the buffer size is greater than
the maximum violation of this most extreme scenario, then all active collision
avoidance constraints do not lead to actual inter-agent collisions. Note that the
two robots can be any agent pair whose virtual buffers are actively colliding in
the multi-agent system, thus we assign indices i and j to them.

In the following, the subscripts i and j denote the indices of agent i and
agent j, respectively, while the sub/superscripts u, l, x, y, n, v, c, and d re-
spectively denote the upper branch, lower branch, X component, Y component,
vector-norm-based, vector-component-based, centralized, and decentralized of the
corresponding variables.

3.1 Constraints Defined on Vector Norms

We use centroid-to-centroid relative distances as the metric for collision avoid-
ance. This results in each robot being encompassed in a circular virtual buffer
with a radius of ri. Mathematically, the collision avoidance constraint is expressed
in terms of a vector norm [10]

gij ≜ d2ij − (xi − xj)
2 − (yi − yj)

2 = d2ij −∆pT

ij∆pij ≤ 0 , (16)

where dij = ri + rj is the virtual safety distance between the two possibly het-

erogeneous robots, and the notation ∆pij ≜ pi − pj = −∆pji. Without loss
of generality, we investigate a homogeneous multi-agent robotic system in the
present and following sections.

Differentiating (16) with respect to time once and twice, respectively, we ob-
tain

ġij = 2∆pT

ji∆ṗij

g̈ij = 2∆pT

ji∆p̈ij + 2∆ṗT

ji∆ṗij

(17)

which, along with (16), are substituted into (12) to stabilize gij .
Given the physical parameters of the robots (mass m, characteristic length L,

maximum attainable speed V̄ ), we can perform a systematic dimensional study
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to choose proper values of natural frequency ω, damping ratio ζ, and virtual
buffer radius r for the least-effort collision avoidance according to the method
presented in [10]. In Section 4, we will present an analytical approach to select
control parameters ω, ζ, and r.

Note that the vector-norm-based constraint (16) is in essence one dimensional
(i.e., colinear with ∆pij) and thus is unable to resolve deadlocks, in which the col-
lision avoidance constraints prevent robots from pursuing their virtual leader with
nonzero control actions. Deadlocks can happen, e.g., when the collision avoidance
constraint is colinear with the vector-norm-based leader following constraint but
in an opposite direction.

Furthermore, given the fact that robots can take on different geometries in a
multi-agent system, it is important to allow the degree of flexibility to account
for non-uniform buffer size along different axes. On the contrary, circular virtual
buffers will be overly conservative if a robot has a much larger size along one axis
than that in another axis.

Due to the aforementioned reasons, we define collision avoidance in terms
of vector components in the next section to resolve deadlocks and to address
possibly non-uniform-shaped robots.

3.2 Constraints Defined on Vector Components

We enclose each robot within a rectangular virtual buffer and describe collision
avoidance in terms of vector components [11]

gij = [gxij gyij ]
T ≜ |∆pij | = |pi − pj | ≥ rij , (18)

where | · | denotes absolute value, rij = rji = ri+rj = [rxij ryij ]
T ∈ R2 are the sizes

of the rectangular virtual buffers for actively colliding agent pair {i, j} along the
X and Y axes, and the inequality sign denotes elementwise comparison.

Decomposing constraints (18) into two branches: an upper and a lower bound
on pi, we obtain

gu
ij = [gxuij gyuij ]

T ≜ {∆pij ≤ −rij}, gl
ij = [gxlij gylij ]

T ≜ {∆pji ≤ −rij}. (19)

Therefore, the upper and lower branch of active gij for agent i is respectively

active gu
ij = {−rij < ∆pij ≤ 0} , active gl

ij = {0 < ∆pij < rij} . (20)

Note that the strict equality sign in (20) is assigned to the active upper branch
in order to break the perfect symmetry of the active constraint region.

Hence, the first- and second-order derivatives of the decomposed collision
avoidance constraints are

ġu
ij = −ġl

ij = ∆ṗij , g̈u
ij = −g̈l

ij = ∆p̈ij , (21)

which are substituted into (12) for constraint stabilization.
Two robots are identified to have colliding virtual buffers when both gxij ∈

[gxuij gxlij ] and gyij ∈ [gyuij gylij ] are active. This indicates that the collision avoidance
control actions corresponding to (19) are in a 2-D plane, while those correspond-
ing to (16) are along a line pij . Therefore, vector-component-based constraint
formulation (18) can resolve deadlocks and non-uniform-shaped issues naturally,
given that proper control parameters are selected.
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3.3 Constraints Partitioning

When the number of robots in the multi-agent system increases significantly, a
decentralized control architecture becomes more favorable and even mandatory.
Both the vector-norm-based and vector-component-based constraint formulations
introduced in Section 3.1 and 3.2 involve interacting agents and thus are not
readily applicable to a decentralized framework.

To develop a decentralized architecture while maintaining the advantages
posed by the vector-component-based approach, we partition the collision avoid-
ance constraints (19) between colliding robot pairs {i, j} [12]

g̈u
ij = ∆p̈ij = 2p̈i , g̈l

ij = −∆p̈ij = −2p̈i , (22)

by assuming that each agent i have access to the relative positions ∆pij and the
relative velocities ∆ṗij with respect to its neighbor j, and that p̈i = −p̈j (due
to the homogeneity assumption introduced earlier) in a collision avoidance.

Equation (22) implies that the A matrix of the vector-component-based, de-
centralized framework is scaled by a factor of 2 compared to its counterpart
of the vector-component-based, centralized framework presented in Section 3.2
when constructing the KKT system (14) and solving for the control forces −ATλ.

4 Results and Discussions

Table 2: Comparison of three different constraint formulations
Formulation Framework Constraint Section

1 centralized vector-norm-based 3.1
2 centralized vector-component-based 3.2
3 decentralized vector-component-based 3.3

We compare the performance of three constraint formulations as listed in Ta-
ble 2 by numerically and analytically investigating two robots subject to maximum-
speed, head-on collisions under the same simulation settings. The initial positions
and the initial velocities for the two robots are respectively

p1(0) =

[
−10
0

]
, p2(0) =

[
10
0

]
, ṗ1(0) =

[
V̄
0

]
, ṗ2(0) =

[
−V̄
0

]
. (23)

The numerical studies are conducted in Matlab using a fourth order Runge-Kutta
integrator with a constant integration time step ∆t. The parameters used in these
studies are presented in Table 3.

In the numerical simulations, we compute the instantaneous power due to the
control forces, (−ATλ)Tq̇, where q̇ contains all coordinate velocities, and integrate
it to obtain the time series of the total energy due to the work done by the control
forces. Since we assume there exists no other forces, the kinetic energy change
results purely from the control forces when robots avoid collisions. When the two
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Table 3: The parameters and their values used in a two-robot system subject only
to initial velocities and collision avoidance constraints.

Quantity Variable (Unit) Value

mass m (kg) 10
maximum speed V̄ (m/s) 10
buffer size r (m) 6
natural frequency ω (rad/s) 2
simulation time T (s) 4
integration step ∆t (s) 0.005

virtual buffers are not in collision, the two agents remain in constant speeds at
the repelling speeds when the two virtual buffers instantly detach.

For better comparison, the virtual buffer size along X and Y axis for Formula-
tions 2 and 3 are set to equal, leading to the circular virtual buffer of Formulation
1 being inscribed to the square virtual buffers of Formulations 2 and 3. Note that
this problem is of perfect symmetry.

4.1 Underdamped Constraint Dynamics, ζ = 0.5

Figure 1 illustrates the numerical results for two robot under head-on maximum-
speed collision, where the only constraint, two agents avoid collision, is subjected
to underdamped constraint stabilization dynamics with a ζ = 0.5. The animation
of robots’ position trajectories and the X components of their control forces can
be found online. 1

Figure 1a clearly shows that Formulation 1 cannot resolve deadlocks as the
colliding and repelling velocities are colinear, while both Formulations 2 and 3
that use vector-component-based constraints can handle deadlocks as both agents
turn to their right and away from each other given the control law. Within the
same time frame, Formulation 2 achieves the largest departure distances. This is
also supported by Figure 1g that Formulation 2 results in the largest constant
speed after collision avoidance. Note that no traffic rule is specified for both
robots. The “turn-to-right” behaviors result purely from the natural evolution of
system dynamics subject to the constraints (19).

Figures 1c and 1d indicates that the onset of collision avoidance occurs at
t = 0.4 seconds and the inherent nature of nonlinear and discontinuous for the
proposed methodology. Figures 1g and 1h demonstrate that the robots move in
constant velocities after virtual buffers depart from each other.

It is evident that Formulation 3 has a slightly faster response time, and both
Formulations 2 and 3 achieve collision avoidance more than 0.6 seconds faster
than that of Formulation 1. Further, Formulation 3 achieves almost the same peak
magnitude as that of Formulation 1 but with a faster peak time, and Formulation
3 arrives at the same peak time as that of Formulation 2 but with about a twice
magnitude. This is due to the fact that the A matrix in Formulation 3 is scaled by
a factor of 2 compared to that of Formulation 2 and that both Formulations 2 and

1 https://youtu.be/Gkg-I2PrMWs

https://youtu.be/Gkg-I2PrMWs
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3 have maneuverability in a 2-D plane rather than a 1-D line as for Formulation
1, which is verified in Figures 1f and 1h since the position and velocity in Y
direction stays unchanged ∀t.

It is also evident from Figures 1e and 1f that Formulation 3 attains the largest
relative distance and the fastest peak response while Formulation 1 achieves the
smallest relative distance and the slowest peak response.

It is clear from Figure 1b that all three Formulations dissipate kinetic ener-
gies during collision avoidance, which is also supported by the observation that
the constant velocities after collision avoidance are less than the initial colliding
velocities. Because the imposed underdamped constraint dynamics exhibits oscil-
latory responses of g, the control forces, the velocities, and thus the total energy
also exhibit oscillations.

Based on the observations on Figure 1 and the above discussions, we may
conclude that Formulation 2 has the best overall collision avoidance performance
due to its fast response time, the least maximum control force magnitude (the
least work done), and the largest departure distance.

An Analytical Perspective. The initial conditions for the second-order con-
straint dynamics (12) with 0 < ζ < 1 can be analytically determined given the
initial positions and initial velocities of the two colliding agents at the onset of
constraint violation at t = to [10]

[
g(t)− c
ġ(t)

]
= e−ζωt

[
cos(ωdt) + η sin(ωdt)

1
ωd

sin(ωdt)
−ωd√
1−ζ2

sin(ωdt) cos(ωdt)− η sin(ωdt)

] [
g(to)− c
ġ(to)

]
,

(24)

where η = ζ/
√
1− ζ2, ωd = ω

√
1− ζ2 denotes the damped natural frequency of

the constraint dynamics.
By substituting the first time instant tmax solved from setting ġ(t) = 0 into

(24) for g(t), we can obtain the maximum constraint value gmax as

gmax =
ġ(to)

ω
e

−ζ√
1−ζ2

arctan

√
1−ζ2

ζ + c (25)

for initial conditions g(to)− c = 0 and ġ(to) > 0.
In this case study, to = (10−6)/10 = 0.4 second, g(to) = [6−(−6)]2 = 144 m2,

ġ(to) = −2×[6−(−6)]×[10−(−10)] = 480 m2/s, and gmax = c = (2r)2 = 144 m2

when the two robots have their centroids overlap with each other. Substituting
these numeric values into (25) yields the critical frequency ωcrit ≈ 1.821 rad/s
for Formulation 1. If the actual robot collision occurs at a minimum centroid-
to-centroid distance squared ∥∆pij∥22 = 36 m2, then it is equivalent to setting
gmax = (2r)2 − 36 = 108 m2. Substituting this gmax into (25) yields ωmin ≈ 2.428
rad/s for ζ = 0.5.

Figure 2 illustrates the simulated trajectories subject to ζ = 0.5 and the ana-
lytically determined ωcrit and ωmin for Formulation 1. The results are desired that
reflect the analytical solutions. Figure 2 demonstrates that both Formulations 2
and 3 have nonzero pairwise distances in X and Y directions when the pairwise
distance is close to zero for Formulation 1.
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(a) □: initial positions; ×, +, △:
end positions.

(b) Total energy done by control
forces.

(c) X component of control forces. (d) Y component of control forces.

(e) Positions along X axis. (f) Positions along Y axis.

(g) Velocities along X axis. (h) Velocities along Y axis.

Fig. 1: Comparison of three constraint formulations (solid lines: vector-norm-
based, centralized; dashed lines: vector-norm-based, centralized; dotted lines:
vector-component-based, decentralized) for 2 robots subject to underdamped
constraint dynamics under the same settings. The superscripts n, v, c, d stands
for norm, vector, centralized, and decentralized, respectively. The dash-dot lines
in (a) denote the boundaries of the virtual buffers at t = 0 second.
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(a) Critical natural frequency ωcrit =
1.821 rad/s for Formulation 1 when the
two robots have their centroids overlap.

(b) Minimum pairwise distance is 6 m for
Formulation 1 using the analytically de-
termined ωmin = 2.428 rad/s.

Fig. 2: Vector-norm-based constraint formulation for 2 robots subject to under-
damped constraint dynamics under different natural frequencies.

Similarly, by noting the constraint activation criteria (20) for the vector-
component-based constraints (18), the initial conditions along X and Y axis
are respectively gx(txo) = 6 − (−6) = 12 m, ġx(txo) = 10 − (−10) = 20 m/s,
gxmax = cx = 2rx = 12 m, gy(tyo) = 0 − 0 = 0 m, ġy(tyo) = 0 − 0 = 0 m/s, and
gymax = cy = 2ry = 12 m for Formulations 2 and 3. Note that the virtual buffers
of the two robots are in collision when both gxij and gyij are active. Thus, the onset
time txo = tyo = to. Substituting the initial conditions into (24) we can see that
the constraint dynamics along X and Y axis has the same angular frequencies ωd

and exponential decay rate e−ζωt.
Hence, we can analytically compute the critical frequency ωcrit ≈ 0.911 rad/s

at which the relative distance in X axis is zero and the minimum frequency
ωmin ≈ 1.821 rad/s to ensure a 6-m minimum relative distance in X axis for
Formulation 2. Figure 3 numerically verifies the analytical solutions for ωcrit and
ωmin. Note that the pairwise distances of Formulation 3 is always larger than
those of Formulation 2 in both cases, with a cost of higher magnitude of peak
control forces.

4.2 Overdamped Constraint Dynamics, ζ = 1.1

Numerical results of the same types as in Figure 1 for the same two-robot system
under head-on collision subject to an overdamped constraint dynamics with a
ζ = 1.1 are shown in Figure 4. The animation of robots’ position trajectories and
the X components of their control forces is available online. 2

Since the collision constraint dynamics is overdamped, g approaches its con-
stant threshold (in this case, the size of virtual buffer or its squared, depending
on which Formulation is used) as t goes to ∞. Therefore, the end positions of all
three Formulations stay where the virtual buffers are close to but never detach
from each other (due to the fact that the constraint dynamics is overdamped)

2 https://youtu.be/iOu5oBTdPYc

https://youtu.be/iOu5oBTdPYc
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(a) Critical natural frequency ωcrit =
0.911 rad/s for Formulation 2 when the
relative distance in X axis is zero.

(b) Min pairwise distance is 6 m in X axis
for Formulation 2 using the analytically
determined ωmin = 1.821 rad/s.

Fig. 3: Vector-component-based constraint formulations for 2 robots subject to
underdamped constraint dynamics under different natural frequencies.

subject to velocities close to an infinitesimally positive value. This also explains
why all three Formulations dissipate almost the same amount of energy in Figure
4b during collision avoidance, since both initial and end velocities are the same
and close to each other, respectively.

Based on the observations on Figure 4 and the above discussions, we may
conclude that both Formulations 2 and 3 have similarly better collision avoidance
performance in terms of response time and departure distances than those of
Formulation 1 and that the maximum control force magnitude (the amount of
work done) of Formulation 3 is about twice that of Formulation 2. Therefore,
Formulation 2 again has the best overall performance.

An Analytical Perspective. For this overdamped case with ζ = 1.1, we can
analogously solve for the critical frequency for actual collision from the analytical
solution of the maximum constraint value

gmax =
ġ(to)

ω
e

−ζ√
ζ2−1

ln
(
ζ+

√
ζ2−1

)
. (26)

for initial conditions g(to)− c = 0 and ġ(to) > 0.
Hence, for Formulation 1, ωcrit ≈ 1.149 rad/s, and ωmin ≈ 1.533 rad/s, and

for Formulations 2 and 3, ωcrit ≈ 0.575 rad/s, and ωmin ≈ 1.149 rad/s. Figure 3
presents the trajectories subject to ζ = 1.1 and the analytically determined ωcrit

and ωmin for Formulations 2 and 3. The numerical results are desired that reflect
the analytical solutions.

Note that a square-shaped virtual buffer is assumed with the same valued ζ
and ω along X and Y directions in Formulations 2 and 3. Since the minimum
pairwise distance along X axis, 6 m, is half the size of the virtual buffer in X
direction, 2r = 12 m, for all three Formulations, ωmin in Formulation 2 coincides
with ωcrit in Formulation 1. Note that for all three Formulations, the virtual
buffers will never detach completely (i.e., g−c is always greater than 0) in collision
avoidance since ζ > 1.
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(a) □: initial positions; ×, +, △:
end positions.

(b) Total energy done by control
forces.

(c) X component of control forces. (d) Y component of control forces.

(e) Positions along X axis. (f) Positions along Y axis.

(g) Velocities along X axis. (h) Velocities along Y axis.

Fig. 4: Comparison of three constraint formulations (solid lines: vector-norm-
based, centralized; dashed lines: vector-norm-based, centralized; dotted lines:
vector-component-based, decentralized) for 2 robots subject to overdamped
constraint dynamics under the same settings. The superscripts n, v, c, d stands
for norm, vector, centralized, and decentralized, respectively. The dash-dot lines
in (a) denote the boundaries of the virtual buffers at t = 0 second.
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(a) Critical natural frequency ωcrit =
1.149 rad/s for Formulation 1 when the
two robots have their centroids overlap.

(b) Minimum pairwise distance is 6 m for
Formulation 1 using the analytically de-
termined ωmin = 1.533 rad/s.

Fig. 5: Vector-norm-based constraint formulation for 2 robots subject to over-
damped constraint dynamics under different natural frequencies.

(a) Critical natural frequency ωcrit =
0.575 rad/s for Formulation 2 when the
relative distance in X axis is zero.

(b) Min pairwise distance is 6 m in X axis
for Formulation 2 using the analytically
determined ωmin = 1.149 rad/s.

Fig. 6: Vector-component-based constraint formulations for 2 robots subject to
overdamped constraint dynamics under different natural frequencies.
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5 Conclusions and Future Work

In this paper, a versatile control approach is presented for multi-agent navi-
gation robotic systems with an emphasis on collision avoidance among agents.
The method is based on extending Gauss’s principle of least constraint (GPLC)
with dynamically identifying, incorporating, and stabilizing active inequality con-
straints. The control law results from solving a KKT system, a linear matrix
equation, without iteration or linearization at each point in time. The state tra-
jectories are controlled entirely by constraints that describe system behaviors
without looking ahead to a time horizon and without minimizing an artificial
cost function. These unique features bestow computational simplicity and effi-
ciency to the presented methodology.

Three different constraint formulations are presented and compared on two
robot subject to head-on maximum-speed collision using numerical and analytical
approaches: 1) constraint defined on vector norms in a centralized architecture,
2) constraint determined on vector components in a centralized structure, and
3) constraint specified by vector components in a decentralized framework. Each
robot is enclosed in a virtual buffer whose active collision gives rise to control ac-
tions, making the collision avoidance constraints relaxed. The control parameters,
the natural frequency and damping ratio of the constraint stabilization dynamics
and the virtual buffer size, are physically meaningful and can be selected by an
analytical method introduced in Section 4.

Preliminary results have demonstrated that the present GPLC control is ro-
bust to unknown external disturbances and errors in modeling, measurement,
and estimation. Future research include systematic investigation of GPLC con-
trol’s robustness to those inaccuracies and adaptiveness to time-varying control
parameters. Note that incorporating external disturbances, and modeling, mea-
surement, and estimation errors into the GPLC control framework is a straightfor-
ward task and that these factors can break the perfect symmetry of the problem
and thus contribute to resolve deadlocks. Another future line of research is to
integrate nonlinear robot dynamics and actuator mechanisms into GPLC control
synthesis for multi-agent navigation robots and other robotic applications.
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