
CBS with Continuous-Time Revisit

Andy Li1, Zhe Chen1, Danial Harabor1

1Department of Data Science and Artificial Intelligence, Monash University, Melbourne, Australia
{andy.li,zhe.chen,daniel.harabor}@monash.edu

Abstract

In recent years, researchers introduced the Multi-Agent Path
Finding in Continuous Time (MAPFR) problem. Conflict-
based search with Continuous Time (CCBS), a variant of
CBS for discrete MAPF, aims to solve MAPFR with com-
pleteness and optimality guarantees. However, CCBS over-5

looked the fact that search algorithms only guarantee termi-
nation and return the optimal solution with a finite amount
of search nodes. In this paper, we show that CCBS is incom-
plete, reveal the gaps in the existing implementation, demon-
strate that patching is non-trivial, and discuss the next steps.10

Introduction
Multi-Agent Path Finding (MAPF) is a problem that asks us
plan collision-free paths for a set of moving agents. In clas-
sical MAPF, agents operate on a grid and all actions have
unit costs. Many optimal algorithms for classical MAPF ap-15

pear in the literature, including a large number employing
Conflict Based Search (CBS) (Sharon et al. 2015; Boyarski
et al. 2015; Li et al. 2021; Shen et al. 2023).

MAPFR is a generalisation of the classical MAPF model,
where agents can move and wait in continuous time. Con-20

tinuous Time CBS (CCBS) (Andreychuk et al. 2022) claims
to be the first optimal algorithm for this problem. In recent
years, a significant amount of improvements (Andreychuk
et al. 2021; Walker, Sturtevant, and Felner 2020; Walker
et al. 2021; Walker, Sturtevant, and Felner 2024) and exten-25

sions (Yakovlev, Andreychuk, and Stern 2024; Kulhan and
Surynek 2023) have been made on top of CCBS. However,
when we stopped for a moment and checked the base we
stood on, we noticed that the proposed constraints to resolve
conflicts between move motion and wait motion in CCBS,30

although sound, do not guarantee search termination. This is
because the proposed constraints remove single points in the
real number domain, leaving an infinite number of equiva-
lent collision solutions unresolved. Moreover, the existing
publicly accessible implementation of the CCBS algorithm35

is inconsistent with the design of the algorithm, which ter-
minates the search by aggressively eliminating wait motions
but returns suboptimal solutions. We then demonstrated that
patching the algorithm is non-trivial, where we constructed
a pair of sound constraints that is proved to eliminate colli-40

sion solutions in a maximum range. However, it still failed
to guarantee termination.

Problem Definition
Following Andreychuk et al. (2022), a continuous-time
MAPF problem (MAPFR) takes as input a weighted graph 45

G = {V,E} and a team of k agents {a1, ..., ak}. Every ver-
tex in G maps to a coordinate in a metric space M, and
every edge is a connection between two vertices. Each agent
has a start vertex si ∈ V and a goal vertex gi ∈ V . No
agents shares the same start vertex: ∀i ∈ {1, ..., k}∄j ∈ 50

{1, ..., k} \ i : si = sj , as well as for goal vertex. A plan
πi with length l for agent ai is a sequence of motions mj

i

with their start time τ ji , such as {m1
i@τ1i , ...,m

l
i@τ li}. Each

motion m consists ⟨m.φ,m.D⟩:
• m.D is a positive real number duration of the motion. 55

• m.φ is a motion function mφ : [0,m.D] → M that maps
time to a coordinate in the metric space.

With such a motion function, the problem is able to model
the agent at a non-const speed and follow an arbitrary ge-
ometric curve. The motion function m.φ(t) outputs the co- 60

ordinate of the agent by executing motion m for t amount
of duration. A motion function can be either a moving mo-
tion or a waiting motion. Moving motion function m.φ(0)
returns the current vertex v and m.φ(m.D) returns the next
vertex v′, Waiting motion is when v′ = v and m.φ(t) re- 65

turns the coordinate of v for the entirety of [0,m.D]. In the
MAPFR problem, we assume there is a finite set of move
motions, as there is a finite number of edges in G, and the
motion duration is fixed as edge weights. However, the set
of wait motion is uncountably infinite, as agents can wait 70

for any positive real amount of time. In a valid plan πi, the
from vertex vn of mn

i : (vn, v′n) has to be the to vertex
v′n−1 of previous motion mn−1

i : (vn−1, v′n−1). Simiarily,
the starting time τni of the motion mn

i is always the finish
time τn−1

i +mn−1
i .D of the previous motion mn−1

i . 75

A feasible solution to a MAPFR problem is a set
of plans Π = {π1, ..., πk} where every planned mo-
tion of each agent ai is conflict-free with respect to ev-
ery planned motion of every other agent aj ̸= ai.
A conflict ⟨ai, aj ,mi@τi,mj@τj⟩ between two agents 80

ai and aj happens when a collision detection function
InCollision(mi@τi,mj@τj) returns true, indicating there
exists a time t where the shapes of two agents overlaps.

Following Andreychuk et al. (2022), we use disc-
shaped agents with radius r in this paper. Thus function 85

InCollision(mi@τi,mj@τj) returns true if there exists a
time t that the distance between the centre of the two agents
ai and aj , is smaller than 2r, ||mi −mj ||2 < 2r. Note that
if InCollision(mi@τi,mj@τj) = true, then there must
exist two time points ts and te, where ts is the first time90

when two agents’ distance equal to 2r, and te the second
time when two agents’ distance equal to 2r or the time one
of the motion finishes. We refer to the interval (ts, te) as
the collision interval. Our objective is to compute a feasible
plan that minimises the Sum of Individual (path) Cost (SIC),95

where SIC =
∑

i∈[1,m] eti with eti indicating the end time
of the last motion on path πi.

Background
CBS with Continuous Time
CBS with Continuous Time (CCBS) (Andreychuk et al.100

2022) is a two-level search algorithm that aims to solve
the MAPFR problem optimally. CCBS assumes all agents
have the same speed and the travel time for an edge is
the same as the edge length. The high-level of CCBS
is a best-first search on a binary Constraint Tree (CT).105

Each CT node N contains a set of conflict-resolving con-
straints N.constraints applicable to agents, a solution N.Π
that satisfies N.constraints, and the cost N.g of N is
the sum of individual cost (SIC) of N.Π. The low-level
search of CCBS finds a temporal shortest path that satis-110

fies all the constraints for each agent at the current node.
CCBS employs Safe Interval Path Planning (SIPP) (Phillips
and Likhachev 2011) to compute paths. CCBS starts by
generating a root CT node that contains no constraints
(N.constraints = ϕ) and a solution of individual short-115

est plans for all agents. It then iteratively selects a node N
with the smallest N.g. If N contains no conflicts, then it is
the goal node. Otherwise, it selects one of the conflicts that
occurred in N.Π, let’s say ⟨ai, aj ,mi@τi,mj@τj⟩. Then
CCBS generates two child CT nodes Ni and Nj with each120

node appending one more conflict-resolving constraint C to
N.constraints, Ni.constraints = N.constraints ∪ Ci

(resp. Nj .constraints). An unsafe interval Ii : [ti, t
′
i)

(resp. Ij) for ai (resp. aj) is a time period where if the
starting time τi (resp. τj) of the motion mi (resp. mj) is125

within the Ii (resp. Ij), then it will conflict with mj@τj
(resp. mi@τi). A motion constraint Ci : ⟨ai,mi, Ii⟩ in-
dicates that ai cannot start the motion mi within the unsafe
interval Ii.

The Claims of CCBS130

Following Andreychuk et al. (2022), we define a Sound pair
of constraints as:

Definition 1 (Sound pair of constraints). Given a MAPFR

problem, a constraints pair is sound iff in every optimal fea-
sible solution, at least one of these constraints holds.135

Andreychuk et al. (2022) makes the following claims:

Claim 1. The pair of constraints for resolving a conflict
is sound, and any MAPFR solution that violates both con-
straints must have a conflict:

Lemma 1. For any CCBS conflict ⟨ai, aj ,mi@τi,mj@τj⟩, 140

and corresponding unsafe intervals Ii and Ij , the pair of
CCBS constraints ⟨ai,mi, Ii⟩ and ⟨aj ,mj , Ij⟩ is sound.
Claim 2. CCBS is complete and is guaranteed to return an
optimal solution if one exists.

To support Claim 2, Andreychuk et al. (2022) argue that 145

for a CT node N , letting π(N) be all valid MAPFR solutions
that satisfy N.constraints, N.g be the cost of N , and N1

and N2 be the children of N , the following two conditions
hold for any N that is not a goal node.
1. π(N) = π(N1) ∪ π(N2) 150

2. N.g ≤ min(N1.g,N2.g)

The first condition holds because N1 and N2 are constrained
by a sound pair of constraints (Definition 1 and Lemma 1).
The second condition holds because N.solution by con-
struction is the lowest cost solution that satisfies the con- 155

straints in N , and the constraints in N1 and N2 are a superset
of constraint in N . These two conditions, when combined,
aim to ensure the completeness of CCBS, guaranteeing that
an optimal solution will be found if one exists. The first con-
dition guarantees that any valid solution is reachable via one 160

of the un-expanded CT nodes. As CCBS performs a best-
first search over CT and explores CT nodes with minimal
cost first, the second condition helps CCBS guarantee to find
an optimal MAPFR solution.

However, existing work overlooked the fact that CBS, 165

best-first search or any tree-based state-space search only
guarantees to terminate and return the optimal solution with
a countable number of search states.

Infinite Nodes Expansions
Andreychuk et al. (2022) assumes that the number of pos- 170

sible nodes in CT is finite. This holds if the problem only
has move motions however, there are infinitely many wait
motions. As a result, the search algorithm has to explore an
infinite number of possible nodes to find the optimal solu-
tion. In this section, we will demonstrate how CCBS failed 175

to eliminate conflicts between wait motion and move motion
and generate infinite number of nodes.

Conflict Resolution Failure
Given a CT node N with cost N.g and a collision
c = ⟨ai, aj , wi@t1,mj@t2⟩ between a wait motion 180

wi = ⟨(v1, v1), wi.D⟩ for ai and a move motion mj =
⟨(v2, v3), ||(v2, v3)||2⟩ for aj , where ||(v2, v3)||2 is the
length of edge (v2, v3).

CCBS generates a sound pair of motion constraints:

• ⟨ai, wi, [t1, t′1)⟩, which forbids ai to take the wait motion 185

wi, with duration wi.D, from t1 to t′1, and

• ⟨aj ,mi, [t2, t′2)⟩, which forbids aj to take the move mo-
tion mj from t2 to t′2.

The intervals [t1, t
′
1) and [t2, t

′
2) are the maximal possible

unsafe intervals for wi and mj , respectively. If ai starts wi 190

at any time within [t1, t
′
1), it will inevitably collide with aj

starting mj at t2. Similarly, if aj starts mj at any time within
[t2, t

′
2), it will inevitably collide with ai starting wi at t1.

Although a sound pair of motion constraints guarantees
that no collision-free solutions will be eliminated on split-195

ting, it is not enough for CCBS to find an optimal solution
with wait motion that can be any real number duration.

The first issue is that using motion constraints to elimi-
nate conflict between wait motions and move motions only
removes one duration option for wait motion on (v1, v1). But200

there are an infinite number of duration options for motion
(v1, v1) that collide with mj@t2:

Lemma 2. Let N ′ with constraint ⟨ai, wi, [t1, t′1)⟩ be a child
node of N with a collision interval (tc1, t

c
2). The constraint

eliminates solutions that wi conflicts with mj@t2, but per-205

mits an infinite number of solutions that any wait motion
w′

i = ⟨(v1, v1), wi.D + δ⟩ conflicts with mj@t2, where
δ ∈ (wi.D − tc1 + t1,∞) \ {0}.

Proof. Since the duration of wait motions can be any posi-
tive real number, thus there are infinite number of choices on210

δ. Thus leading to infinite number of choices on w′
i with δ in

the given range, i.e. collision happens when t1+wi.D−δ >
tc1. For every w′

i, executing w′
i at any time t′ ∈ [t1, t

′
1)

collides with mj@t2, since the duration ai waits on vi is
[t′, t′ + w′

i.D) which always covers the duration of execut-215

ing wi at the same time and wi collide with mj@t2.

Termination Failure
With an infinite number of collision solutions permitted by
one of the child nodes in each splitting, CCBS has to explore
an infinite number of nodes and eliminate an infinite number220

of conflicts to find an optimal solution, if it exists:

Theorem 1. Given a CT rooted at N , if there exists an op-
timal solution node N∗ with cost c∗ = N.g + ∆ and ∆ is
a non-zero positive real number, CCBS, which uses pairs of
motion constraints to resolve conflicts, have to explore an in-225

finite number of nodes to find N∗ if N has conflicts between
wait and move motions.

Proof. Assuming the problem only has ai and aj , where re-
placing the wi with w′

i = ⟨(v1, v1), wi.D + δ⟩ in N.Π and
delaying the executing of following motions for δ > 0 re-230

sulting in a new solution π′ with cost N.g + δ. There are
an infinite number of solutions with a cost between N.g
and N.g + ∆, since the number of options for δ ∈ (0,∆)
is infinite in a real number domain. In case of δ < 0, if
w′

i = ⟨(v1, v1), wi.D − δ⟩ and w′′
i = ⟨(v1, v1), δ⟩, wi@t is235

equivalent to w′
i@t followed by w′′

i @(t+(wi.D− δ)). Thus
there are infinite equivalent solutions with cost N.g.

According to Lemma 2, each CCBS split removes only
one duration option for wi.φ = (v1, v1) in one of its child
nodes N ′ and permits an infinite number of duration choices240

between (wi.D,wi.D +∆) and an infinite number of ways
to replace wi with two or more wait combinations, thus
CCBS have to split or expand for infinite layers to remove
all conflict solutions with cost in range (N.g,N.g + ∆) to
reach N∗ since it explores the CT in a best first manner.245

As a result, CCBS cannot always terminate and return
the solution if strictly resolving conflicts with motion con-
straints. Even considering that most computers cannot op-

erate on real number domains, CCBS have to expand for
every representable number on wait motion durations to find 250

a solution, which is almost impossible since each expansion
doubles the amount of remaining work.

Alternative Implementations
While the previous section shows that CCBS is not able
to terminate if there exist conflicts between wait motions 255

and move motions, however, the existing publicly accessi-
ble CCBS implementation1 from Andreychuk et al. (2022)
often terminates with the existence of such conflicts. It re-
solves conflicts between wait and move motions by forbid-
ding agents present on a vertex within a given duration. In 260

this section, we show that such implementation eliminates
collision-free solutions and discuss alternative implementa-
tions that utilise this type of constraint.

Vertex Constraint
Instead of motion constraints, the existing implementation 265

defines a different type of constraint to resolve conflicts be-
tween wait and move motions, we call it vertex constraint,
which is similar to the constraints proposed by Atzmon et al.
(2018). Vertex constraint forbids the existence of an agent
ai within a given time range [t, t′). We use ⟨a, v, (t, t′)⟩ to 270

denote such constraint. Compared to a motion constraint,
which forbids the starting of a wait motion (with a single
fixed duration), vertex constraint forbids agent a execut-
ing any wait motion ⟨(v, v), D⟩ at any time τ , as long as
[τ, τ +D] overlaps with (t, t′). 275

Given the same CT node N with the same conflict c =
⟨ai, aj , wi@t1,mj@t2⟩, the existing implementation intro-
duces a pair of vertex and motion constraints:

• ⟨ai, vi, (ts, te)⟩, a vertex constraint forbids ai use vi, and

• ⟨aj ,mj , [t2, t′2)⟩, an motion constraint forbids aj execute 280

action mj .

In this constraints pair, (ts, te) is the collision interval be-
tween wi@t1 and mj@t2 and [t2, t

′
2) is the unsafe interval

for aj that executing mj at any time in this range must col-
lide with wi@t1 for ai. There is a detailed example in Ap- 285

pendix A on how to compute the collision interval.

Elimination of Feasible Solutions An example problem
is shown in Figure 1, Fig1a shows the spatial graph and
Fig1b shows the constraints and agents’ movements over
time, time flows from top to bottom. a1 moves from A to 290

B to D and a2 parks at its goal B. When collision raises
between a1 moves from A to B and a2 parks at B (waits
since time 0), the existing implementation generates two
constraints: The first constraint forbids a1 moving to B
(shown as the red range on A in Fig1b), since moving to 295

B at any time collides with the wait motion of a2 at B. The
second constraint forbids a2 from occupying B within the
red region. These constraints eliminate the solution that a1
waits a while and then departs (purple arrowed lines), and a2
also waits a while then leaves and comes back (blue arrowed 300

1https://github.com/PathPlanning/Continuous-CBS

(a) (b) (c)

Figure 1: (a) shows the problem where a1 is taking the ac-
tion m1 = ⟨(A,B), dAB⟩@0, and a2 is parking at its goal
w1 = ⟨(B,B),∞⟩@0. (b)(c) shows constraints (red region)
placed over the timeline and the pink regions are the colli-
sion interval. (b) motion and vertex constraints with a pair
of collision-free solutions. (c) shifting constraints.

lines), therefore the existing CCBS implementation using a
pair of vertex and motion constraints is not complete.

Since these constraints eliminate feasible solutions and vi-
olate Claim 1, they do not form a pair of sound constraints.
Consequently, the approach is incomplete and may return305

suboptimal solutions. Appendix B provides a detailed exam-
ple that CCBS implementation returns a suboptimal solution
with a cost significantly larger than a hand-crafted solution.

Sound Pair of Shifting Constraints
With existing efforts proposing post constraints that elimi-310

nate wait motions of size larger than a single time instant.
We show such instantiation of utilising vertex constraint is
not sound. So then, is there any way to construct sound con-
straints using vertex constraint that eliminates waiting mo-
tions in a range larger than a single time instant? In this sec-315

tion, we present such constraints pair.
Given a conflict ⟨ai, aj , wi@ti,mj@tj⟩ between a wait

motion wi on vertex v and a move motion mj with a col-
lision interval Ic = (tcs, t

c
e). Given δ that shifts mj to start

at tj + δ results a collision interval Ic′ = (tcs + δ, tce + δ).320

We call I = [tj , tj + δ] as a shift interval, and then interval
Io = (tcs + δ, tce) is the overlapping of Ic and Ic′. We define
a pair of Shifting Constraints as:

• ⟨ai, v, Io⟩, forbids ai occupy v in Io

• ⟨aj ,mj , I⟩, forbids aj starts mj in I.325

Figure 1c shows an illustrative example of such constraints.
Note that, depending on the choices of δ, the ranges of
the constraint intervals vary. The length of collision interval
|Ic| = |Io|+|I| and δ decides how total length is distributed
to vertex constraint and motion constraint, the range length330

is defined by the range end time minus the range start time.
There also exists a maximum range length lmv

max of collision
interval between a move motion mj and any wait motion on
v, since lmv

max is decided by r and the motion.

Theorem 2. Given a δ, Shifting Constraints pair is sound.335

Proof. Give any t̂ ∈ I and x = t̂− tj , Îc = (tcs +x, tce +x)

is the collision interval if mj@t̂. Since x ≤ δ, tcs+x ≤ tcs+δ

and tce+x ≥ tce. Thus Io ⊆ Îc and aj starts mj in I collides
with ai occupies v within Io.

Theorem 3. Given any vertex constraint Cv on v (resp. mo- 340

tion constraint Cm on m) with any constraint interval Iv
(resp. Im) and its size |Iv| ≤ lmv

max (resp. |Im| ≤ lmv
max), if

the interval Im (resp. Iv) of the corresponding motion con-
straint Cm on m (resp. vertex constraint Cv on v), violates,
or constraint any other time beyond the interval I (resp. Io) 345

defined by, Shifting Constraints definition, the pair of con-
straints eliminates collision-free solution.

Proof sketch. Given a vertex constraint Cv , if the corre-
sponding motion constraint Cm constrains time t, which is
outside of the interval defined by Shifting Constraints. There 350

exists a range constrained by Cv , agents occupying v in this
range do not collide with agents executing m at t, since the
range is out of the maximum collision interval between m@t
and v. The same logic applies when given Cm and Cv con-
strains time outside the interval of the definition of Shifting 355

Constraints. The full proof is provided in Appendix C.

Unfortunately, such constraints still lead to termination
failure, and, remember, Theorem 3 demonstrated that vertex
and motion constraint pairs beyond the Shifting Constraints
definition is not sound. If the δ > 0, then Io cannot elim- 360

inate the collision solution that aj start mj@tj and ai oc-
cupy v at tcs, therefore the conflict is not resolved by shift
constraints and leading to infinite expansions. And if δ = 0,
then I = [tj , tj], which means, this constraint will suffer
a similar infinite expansion problem with the one stated in 365

Lemma 2 and leading to infinite expansions.

Conclusion
In this paper, we demonstrated how CCBS overlooked the
fact that the algorithm has to guarantee a finite number
of node expansions to claim optimality and completeness. 370

We then discussed how existing implementation attempts to
patch the algorithm with a pair of vertex and motion con-
straint, but in an incomplete manner. But following their
attempts, we proposed shifting constraints, a sound pair of
vertex constraint and motion constraint, and proved that any 375

constraint intervals beyond the definition of shifting con-
straints leading to the elimination of collision-free solution.
However, such constraints still fail to terminate the search.

All these efforts demonstrated that patching the algorithm
is non-trivial. Such a patch requires the algorithm to ex- 380

plore a finite number of nodes to push the lower bound and
has a finite number of nodes on a given cost. Before con-
tinue pushing the area forward, we have to stop, as further
progress necessitates either developing new techniques or
proving the impossibility of such a patch. Since the opti- 385

mality guarantee has not been achieved yet, we consider
extending CCBS towards a relaxed guarantee algorithm or
efficiency-focused algorithm to be valuable.

References
Andreychuk, A.; Yakovlev, K.; Surynek, P.; Atzmon, D.; and390

Stern, R. 2022. Multi-agent pathfinding with continuous
time. Artificial Intelligence, 305: 103662.
Andreychuk, A.; Yakovlev, K. S.; Boyarski, E.; and Stern, R.
2021. Improving Continuous-time Conflict Based Search.
In Thirty-Fifth AAAI Conference on Artificial Intelligence,395

AAAI 2021, Thirty-Third Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2021, The Eleventh Sym-
posium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021, 11220–
11227. AAAI Press.400

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust multi-agent path finding. In
Proceedings of the International Symposium on Combinato-
rial Search, volume 9, 2–9.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel,405

O.; Tolpin, D.; and Shimony, E. 2015. Icbs: The improved
conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of the International Symposium on Combi-
natorial Search, volume 6, 223–225.
Kulhan, M.; and Surynek, P. 2023. Multi-Agent Pathfinding410

for Indoor Quadcopters: A Platform for Testing Planning-
Acting Loop. volume 1, 221 – 228. Cited by: 0; All Open
Access, Hybrid Gold Open Access.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021. Pairwise symmetry reasoning for415

multi-agent path finding search. Artificial Intelligence, 301:
103574.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2011,420

Shanghai, China, 9-13 May 2011, 5628–5635. IEEE.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence, 219: 40–66.
Shen, B.; Chen, Z.; Li, J.; Cheema, M. A.; Harabor, D. D.;425

and Stuckey, P. J. 2023. Beyond pairwise reasoning in multi-
agent path finding. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 33,
384–392.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2020. Gen-430

eralized and Sub-Optimal Bipartite Constraints for Conflict-
Based Search. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 34(05): 7277–7284.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2024. Clique
Analysis and Bypassing in Continuous-Time Conflict-Based435

Search. In Proceedings of the 23rd International Confer-
ence on Autonomous Agents and Multiagent Systems, AA-
MAS ’24, 2540–2542. Richland, SC: International Founda-
tion for Autonomous Agents and Multiagent Systems. ISBN
9798400704864.440

Walker, T. T.; Sturtevant, N. R.; Felner, A.; Zhang, H.; Li,
J.; and Kumar, T. K. S. 2021. Conflict-Based Increasing
Cost Search. Proceedings of the International Conference
on Automated Planning and Scheduling, 31(1): 385–395.

Yakovlev, K.; Andreychuk, A.; and Stern, R. 2024. Optimal 445

and Bounded Suboptimal Any-Angle Multi-agent Pathfind-
ing (Extended Abstract). volume 17, 295 – 296. Cited by:
0; All Open Access, Bronze Open Access.

Appendix A. Computing Collision Interval

In this section we give a detailed example on how collision 450

interval is computed in implementation. Following the con-
ceptual example in Figure 2, if agent ai waits at a vertex
O infinitely with wait action wi@t, and another agent aj
moves from vertex M to N with action m@t0, t0 ≫ t.
The collision interval between w@t and m@t0, also the time 455

range of the range constraint for ai, is (t0 + ||(M,H)||2 −
||(P1, H)||2, t1), t0 is the moving action start time, P1 is the
location point on edge (M,N) where aj starts overlapping
with ai if its centre is on P1, and t1 is the moving action end
time. 460

Figure 2: The moving action is M@t0 → N@t1, and the
waiting agent is parking at vertex O. The radius of the
dashed circle shown in the figure is 2 ∗ r. P1 is the point
where two agents start to collide, and P2 is the point the
moving agent leaves the collision region if it keeps moving
along the extension of (M,N) segment. (O,H) is the per-
pendicular bisector of (P1, P2).

Appendix B. Detailed example on sub-optimal
Instances

In this section we will provide an example where CCBS
implementation fails to find the optimal solution. For sim-
plicity we will use v@τ → v′@τ ′ to denote an action 465

⟨m.D, (v, v′)⟩@τ where τ ′ = τ + m.D, and a plan for an
agent can be denoted by changing these notations together.

With a concrete example shown in Fig3, the first con-
flict is between a1 and a2 is m1 = ⟨(A,C), 4.9⟩@0 and
⟨(C,C),∞⟩@3.1. The constraints that CCBS implementa- 470

tion generated are ⟨a1,m1, [0,∞)⟩ and ⟨a2, C, [3.9, 4.9)⟩.
Such a pair of constraints eliminate the solution of a1 wait a
while then depart, and a2 also wait a while then leave. The
final solution from CCBS has a solution with a cost 34.9852:

Figure 3: In this Example, a1 : (A → D), a2 : (B → C),
a3 : (E → H), a4 : (G → B)

475

a1 : A@0 → C@4.9 →D@8.9

a2 : B@0 → B@3.2 →F@5.2 →F@5.2142 →
C@6.3142

a3 : E@0 → E@2.6284 →F@6.6284 →B@8.6284 →
H@9.7284

a4 : G@0 → G@2.1284 →E@3.6284 →E@4.0426 →
F@8.0426 →B@10.0426

We also handcrafted a solution, which has a smaller cost
34.1. As it’s handcrafted, the gap between agents is much
larger than necessary, optimal cost would be smaller than
that.

480

a1 : A@0 → A@2.1 →C@7 →D@11

a2 : B@0 → F@2 →C@3.1 →C@5.5 →
F@6.6 → F@7.5 → C@8.5

a3 : E@0 → F@4 →B@6 →H@7.1

a4 : G@0 → E@1.5 →F@5.5 →B@7.5

In this solution, both a1 and a2 are required to wait so that a2
and a3 don’t need to wait, however, CCBS’s range constraint
eliminates such a solution.

Appendix C. Theorem 3 Full Proof
In this Section, we give the full proof of Theorem 3 follow-485

ing after the proof of Theorem 2.

Theorem 3. Given any vertex constraint Cv on v (resp. mo-
tion constraint Cm on m) with any constraint interval Iv
(resp. Im) and its size |Iv| ≤ lmv

max (resp. |Im| ≤ lmv
max), if

the interval Im (resp. Iv) of the corresponding motion con-490

straint Cm on m (resp. vertex constraint Cv on v), violates,

or constraint any other time beyond the interval I (resp. Io)
defined by, Shifting Constraints definition, the pair of con-
straints eliminates collision-free solution.

Proof. Let Cv be a vertex constraint with interval Iv = 495

(Iv.s, Iv.e) where lmv
max denotes the maximum collision in-

terval length between move motion m and any wait motion
on v.

According to the definition of Shifting Constraints, there
exists a shift interval I = [I.s, I.e] for the Motion Con- 500

straint Cm. Starting m at I.s resulting a maximum colli-
sion interval (Iv.e− lmv

max, Iv.e) with agent occupy v. Here,
I.e = I.s+ δ, where δ = lmv

max − |Iv|.
Suppose t̂ /∈ I is constrained by C ′

m, (t̂cs, t̂
c
e) is the max-

imum collision interval m@t collides with agent occupies 505

v. By definition, Iv.s is also the time move motion m@I.e
starts overlapping with any agent on v.

If t > I.e, then t̂cs > Iv.s. Since m@t, constrained
by C ′

m, does not collide with an agent occupies v be-
fore t̂cs, it does not collide with an agent occupies v in 510

(Iv.s,min(t̂cs, Iv.e)) ⊆ Iv , which is constrained by Cv .
Thus collision-free solutions are eliminated.

Similarly, if t < I.s, collision free solutions m@t and
agent occupies v in (max(t̂ce, Iv.s), Iv.e) ⊆ Iv are elimi-
nated. 515

The same logic applies when given Cm and Cv constrains
time outside the interval of the definition of Shifting Con-
straints.

Therefore, constraining time outside the intervals defined
by Shifting Constraints will eliminate collision-free solu- 520

tions.

