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Abstract—Autonomous robotic search has important applica-
tions in robotics, such as the search for signs of life after a
disaster. When a priori information is available, for example in
the form of a distribution, a planner can use that distribution
to guide the search. Ergodic search is one method that uses the
information distribution to generate a trajectory that minimizes
the ergodic metric, in that it encourages the robot to spend more
time in regions with high information and proportionally less
time in the remaining regions. Unfortunately, prior works in
ergodic search do not perform well in complex environments with
obstacles such as a building’s interior or a maze. To address this,
our work presents a modified ergodic metric using the Laplace-
Beltrami eigenfunctions to capture map geometry and obstacle
locations within the ergodic metric. Further, we introduce an
approach to generate trajectories that minimize the ergodic
metric while guaranteeing obstacle avoidance using measure-
preserving vector fields. Finally, we leverage the divergence-
free nature of these vector fields to generate collision-free
trajectories for multiple agents. We demonstrate our approach
via simulations with single and multi-agent systems on maps
representing interior hallways and long corridors with non-
uniform information distribution. In particular, we illustrate the
generation of feasible trajectories in complex environments where
prior methods fail.
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I. INTRODUCTION

Robotic exploration has multiple applications including
search and rescue missions [1], autonomous data gather-
ing/monitoring [2], and surveillance/patrolling [3]. Such ex-
ploration problems typically entail coverage path planning [4]–
[6] where the robot determines a trajectory that visits every
point in a given space. When a priori information is available,
not every point needs to be visited, and it is beneficial to
focus the robot’s exploration on higher information regions.
In this context, ergodic search [7] is a promising effort to aid
the robots to spend more time in higher information regions
and proportionally less in low information regions. However,
virtually all prior efforts with ergodic search presume no or
small obstacles in the search region [7]–[10]. In this work, we
focus on generating feasible ergodic trajectories for uniform
and non-uniform information maps in complex environments
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for multiple robots, as illustrated in orange, green, and purple
in Fig. 1.

Fig. 1. An interior environment with two rooms connected by a narrow hall-
way. An ergodicity-minimizing trajectory generated using measure-preserving
vector fields translates the three robots, starting from the red X’s, to the other
room through the narrow hallway for efficient information gathering.

II. METHODS

We use the ergodic metric [7] used in many other ergodic
search formulations to maximize coverage in a finite time hori-
zon. However, rather than the standard Fourier basis functions
for a square map ϕij = cos(kiπx) cos(kjπy), we instead use
the spatial harmonic basis functions using the eigenfunctions
of the Laplace-Beltrami operator [11] (1).

∇2ϕk = λkϕk (1)

The kth spectral coefficient of the information distribution
p(x) is ξ̂k = ⟨p, ϕk⟩M and the kth spectral coefficient of the
agent trajectory is given as
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ϕk(xt) (2)

The ergodic metric itself is the squared error between the
information distribution and trajectory’s spectral coefficients,
weighted to place more importance on the low-frequency
coefficients (3). The weighting formula (1+

√
λk)

−2 is chosen
to ensure consistent behavior on an obstacle-free square map
when compared to prior literature.
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A. Measure-Preserving Flows

To minimize the ergodic metric (3) on a finite time hori-
zon, we use gradient-based optimization algorithms to find
local minima. The challenge lies in finding feasible ergodic



trajectories that do not intersect the non-convex obstacles. For
this, we turn to measure-preserving flows (4).

∇ · (p(x)v⃗(x)) = 0 (4)

As the solutions to (4) form a linear subspace, we can ap-
proximate that subspace to a certain extent using a finite basis
of vector fields, all of which satisfy the measure-preserving
criterion. Our paper focuses primarily on an application to a
2D setting, and one method for finding measure-preserving
vector fields on 2D spaces is to use the 2D curl. First, we
choose a set of basis functions {ui(x)} as the eigenfunctions
of the Laplacian, subject to a Dirichlet boundary condition
u(x) = 0 for all x ∈ ∂X .

∇2ui = λiui (5)

Then we can construct vector fields using the 2D curl, where
x and y denote the two dimensions. We can see that the vector
fields in equation (6) always satisfy (4), and on the boundary
∂X , v will always point parallel to the boundary.

vi(x, y) =

[
− 1

p(x, y)

∂ui(x, y)

∂y
,

1

p(x, y)

∂ui(x, y)

∂x

]
(6)

B. Ergodic metric minimization

To minimize the ergodic metric (3) on a finite time horizon,
we formulate the problem as a minimization problem over
the state xt

a for every agent at every time and vector field
coefficients ui(t).

min
xt
a,ui(t)

E(xt
a)

s.t. ẋt
a =

∑
i

ui(t)vi(x
t
a) ∀ t ∈ [0, T ]

∥ẋt
a∥ ≤ vmax ∀ t ∈ [0, T ]

(7)

Optimization is performed using gradient descent while
respecting the constraints.

III. RESULTS AND DISCUSSION

The trajectories computed for a chosen map are illustrated
in Fig. 2, comparing our method (orrange) against competing
methods. These results show that our method is able to traverse
the long corridors and explore the full area. We observe that
STOEC [12] is unable to cross from the left room to the right,
as the corridors are too narrow. And while the control barrier
approach [13] is able to cross over, it often gets stuck with
parts of the trajectory in forbidden regions. In summary, our
method not only explores both rooms successfully in all the
test cases but also minimizes the ergodic metric, as evidenced
by the lower ergodicity values.
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