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Abstract— Search and rescue missions often involve coor-
dinating multiple agents with diverse objectives in a disaster
area. To address the complexities of such scenarios, this paper
presents a Multi-Agent Multi-Objective Ergodic Search (MA-
MO-ES) method to optimize task allocation between agents
and objectives for efficient exploration. The combinatorial
nature of task allocation makes it computationally expensive
to solve for optimal allocation using brute force. Apart from a
large number of possible allocations, computing the cost of a
task allocation is itself an expensive planning problem. Unlike
previous approaches that limit the solution space by restricting
the number of agents per task, this work allows for flexible
agent assignments. We introduce a novel branch and bound
algorithm that not only accommodates this generalization but
also achieves an order of magnitude speedup when attempting
to minimize the maximum ergodicity across all objectives.
Additionally, in scenarios where one robot is paired with
multiple objectives, finding an optimal trajectory for the robot
involves balancing trade-offs between conflicting objectives,
resulting in the generation of a Pareto optimal front. In this
work, we leverage the minimax metric to label a single point on
the Pareto optimal front as optimal and present an analytical
approach via the minimum bounding sphere to compute this
optimal minimax point without relying on the generation of the
Pareto front.

I. INTRODUCTION AND RELATED WORKS

Applications such as search and rescue [1], surveillance
[2], and planetary exploration [3] all require planning for
multiple robots to collectively search a domain to gain
information about it. In complex scenarios, there may be
multiple competing forms of information to collect, which
have different scales across the domain; which we refer to
as information maps. In such a scenario, it is natural to
cast the problem as a multi-objective optimization where
each objective is to cover the domain subject to a single
map. In a multi-agent setting, the problem further demands
the appropriate allocation of agents to information maps
to ensure effective coverage of all maps. We approach this
problem as a Multi-Agent Multi-Objective Ergodic Search
(MA-MO-ES) problem as shown in Fig. 1. The reader is
referred to [4] for a detailed discussion about the prior work
and a literature review on Multi-Robot Task Allocation
(MRTA) problem, Ergodic Search, and Multi-Agent Multi-
Objective Task Allocation and Path Planning.
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Fig. 1: This figure illustrates the Multi-agent Multi-objective
Ergodic Search (MA-MO-ES) problem using five informa-
tion maps (1− 5) that span the same physical region, and
three agents (Red, Blue, and Green). The optimal allocation
is shown with each agent in a different box. An agent’s
trajectory is optimized on a weighted average of its maps
and evaluated by reconstructing the trajectory on each map.

The key contributions of this proposed work include:

1) Generalized Multi-Agent Multi-Objective Ergodic
Search (MA-MO-ES) Problem Formulation

2) Novel Branch and Bound-based solution approach
3) An order of magnitude improvement in solution com-

putation time when compared to a naive extension of
prior work [4]

4) New solution approach leverages robots that start at
the same initial location for further speedup

5) Minimum Bounding Sphere-based scalarization ap-
proach that computes the minimax point on the Pareto
optimal front without computing the entire Pareto op-
timal front when a single robot is paired with multiple
information maps



II. PROBLEM DESCRIPTION

A. Mathematical Preliminaries

Let W = [0,L1]× [0,L2]× ·· ·× [0,Lν ] ⊂ Rν denote a ν-
dimensional workspace that is to be explored by the robots.
Each robot has an (identical) n-dimensional state space Q =
W ×V (n≥ ν). V is comprised of the robot state components,
such as velocities or orientations, that do not affect what the
sensor sees. Let qi : [0,T ] → Q denote a trajectory of the
ith robot in its state space with T ∈ R+ representing the
time horizon. Let the set of all state space trajectories be H.
Let P : Q → W project the state space into the workspace.
The robots have deterministic dynamics given by q̇i(t) =
f (qi(t),ui(t)), where ui(t) ∈ Rm is the control input of the
ith robot.

Let c(x,qi) : W × H → [0,1] denote the time-averaged
statistics of a trajectory qi, which is defined as:

c(x,qi) =
1
T

∫ T

0
δ (x−P(qi(τ)))dτ, (1)

where δ is a Dirac function. Let φ : W → R denote a static
information map that describes the amount of information
at each location in the workspace. In this work, each infor-
mation map is a probability distribution with

∫
W dφ = 1 and

φ(x)≥ 0,∀x ∈ W . The quality with which a robot trajectory
qi covers an information map φ can be quantified using an
ergodic metric [5]:

E (φ ,qi)=
K

∑
k=0

λk(ck −FCk)
2 (2)

=
K

∑
k=0

λk

(
1
T

∫ T

0
Fk(q(τ))dτ −FCk

)2

where (i) FCk =
∫
W φ(x)Fk(x)dx represents the kth

Fourier coefficient of the information map, Fk(x) =
1
hk

Πν
j=1 cos( k jπx j

L j
) is the cosine basis function for index

k ∈ Nν and K is the number of Fourier bases considered,
(ii) ck denotes the kth Fourier coefficient of c(x,qi), (iii)
hk denotes the normalization factor as defined in [5], and
(iv) λk = (1+ ||k||2)− ν+1

2 denotes the weight for each corre-
sponding Fourier coefficient. When an agent must explore
multiple maps, planning can instead consider a weighted
sum (or ”scalarization”) of all the maps. Different choices
of weights will result in different ergodic metric, evaluated
on the individual maps.

B. Problem Description

Given a set of m information maps M = {M1,M2, . . . ,Mm},
and a set of r robots R = {R1,R2, . . . ,Rr}, consider the
power sets P(M ) and P(R) of sets M and R as follows:
P(M ) = { /0,{M1},{M2}, . . . ,{M1,M2}, . . . ,{M1, . . . ,Mm}}
P(R) = { /0,{R1},{R2}, . . . ,{R1,R2}, . . . ,{R1, . . . ,Rr}}.
A pairing Pi j can then be defined as follows:
Pi j = {(mP

i ,rP
j ) : mP

i ∈ P(M ),rP
j ∈ P(R)}

An allocation A is a set of pairings:
A = {Pi j,Pi′ j′ , . . .}
Note that pairings can also be represented with a single index
for brevity: A = {P1,P2, . . . ,Pk} where k ≤ 2m ×2r.

To make the problem tractable, we impose the following
five constraints on the allocations:

1) Every pairing in an allocation should contain at least
one robot and at least one map.

=⇒ |mP
i | ≥ 1 ∧ |rP

j | ≥ 1 ∀ Pi j ∈ A

Examples that violate constraint 1:
A1 = {({M1}, /0),({M2},{R1,R2})},
A2 = {( /0,{R1}),({M1,M2},{R2})}

2) All maps and robots belong to at least one pairing
within an allocation.

=⇒

 ⋃
Pi j∈A

mP
i = M

 ∧

 ⋃
Pi j∈A

rP
j = R


Examples that violate constraint 2:
A3 = {({M1},{R1,R2})} - M2 is not part of any
pairing,
A4 = {({M1,M2},{R1})} - R2 is not part of any
pairing

3) One map can not be part of two different pairings:

=⇒ (mP
i ∩mP

i′ ) = /0 ∀ i ̸= i′,Pi j,Pi′ j ∈ A
Examples that violate constraint 3:
A5 = {({M1,M2},{R1}),({M1}),{R2}} - M1 is part of
both pairings

4) One robot can not be part of two different pairings:

=⇒ (rP
j ∩ rP

j′ ) = /0 ∀ j ̸= j′,Pi j,Pi j′ ∈ A
Examples that violate constraint 4:
A6 = {({M1},{R1,R2}),({M2},{R1})} - R1 is part of
both pairings

5) Multiple information maps can not be paired with
multiple robots:

=⇒ |mP
i |= 1∨|rP

j |= 1 ∀ Pi j ∈ A

Examples that violate constraint 5:
A7 = {({M1,M2},{R1,R2})}

Problem: Determine allocation Aopt that minimizes the
maximum ergodicity for all maps, while respecting con-
straints 1−5:

Aopt = argmin
A

( max
mP

i ∈M ,Pi j∈A
E

qr j
mi )

Before we dive into the proposed solution approach to
this generalized MA-MO-ES problem, it is worth mentioning
how all kinds of pairing are handled. When one robot is
paired with one information map, we refer to it as Single
Agent Single Objective Ergodic Search (SA-SO-ES) and
utilize techniques from [6]. When one robot is paired with
multiple information maps, we need to leverage techniques
from multi-objective optimization. We refer to this variant
as Single Agent Multi Objective Ergodic Search (SA-MO-
ES) and lean on results from [7]. This work also presents



an approach to extend SA-MO-ES to Multi-Agent Multi-
Objective Ergodic Search (MA-MO-ES) where multiple
maps are paired with multiple agents. This extension, once
again, leverages multi-objective optimization. As a result,
such extension would always underperform when compared
to an allocation where the pairing has at most one map or at
most one robot [4]. For this reason, we will not consider
pairings with multiple robots and multiple maps. Lastly,
when multiple robots are paired with one information map,
we refer to it as Multi Agent Single Objective Ergodic Search
(MA-SO-ES) and once again, use the stochastic optimization
technique presented in [6] to obtain the ergodic trajectory for
all the robots involved.

III. KEY INSIGHTS INTO THE PROPOSED METHOD

It is worth noting that this formulation relaxes an addi-
tional constraint 6 placed in prior work [4]:

6) Every pairing can have at most one robot:

|rP
j |= 1, ∀ Pi j ∈ A

Counterexample: A8 = {({M1},{R1,R2})}

The relaxation of this constraint allows for an improve-
ment in optimality. Consider the following example (see Fig.
2) where three maps are to be allocated to three robots such
that the maximum ergodicity on the three maps is minimized.

(a) Map 1 (M1) (b) Map 2 (M2) (c) Map 3 (M3)

Fig. 2: Three information maps M1,M2,M3 and three robots
R(red),B(blue),G(green) with same initial location

Prior work [4] presents a Branch and Bound approach
to this problem where the robots are treated as levels and
the branching is carried out on the maps (see Fig. 3). For
instance, in the first level, maps M1, M2, and M3 are allocated
to robot R. In the next level, one of the two remaining maps
are allocated to G. While pairing two maps with a single
agent does not violate any constraints, it would exhaust
two maps leaving none for the third agent, thus violating
Constraint 1. Consequently, for this specific example, we do
not show any pairings between multiple maps and a single
robot in Fig. 3. In this example, since all agents start at
the same location, any allocation that pairs one robot to one
map irrespective of the robot yields the same result, as is
illustrated in the leaf nodes of the graph created in Fig. 3.

The tree shown in Fig. 3 enforces Constraint 6. When
attempting to relax constraint 6 with a similar structure, this
framework poses a significant challenge. Adding multiple
robots to a single map does not necessarily reduce ergodicity.
As a result, the feature leveraged by [4] to prune nodes as
they are created based on an incumbent is no longer helpful.

Fig. 3: Branch and bound presented in [4] for the example
shown in Fig. 2. At each node, M1,5 indicates the pairing
of M1 with the robot in its respective layer resulting in an
ergodicity value of 5×10−6.

Consequently, there can be no pruning achieved until every
node is expanded all the way until its leaf node.

To this end, we propose a modification to the structure of
this branch and bound tree where the levels are now made
of maps instead of robots. This brings back the ability to
prune nodes as soon as they are created if they prove to be
more expensive than the incumbent, severely improving the
solution computation time. An illustration of the branch and
bound tree with this modification is presented in Fig. 4.

Fig. 4: Modified Branch and bound tree to solve the example
shown in Fig. 2 for the generalized MA-MO-ES problem.

As is illustrated in Fig. 4, the ergodicity for the optimal
allocation dropped from 5× 10−2 from Fig. 3 to 4× 10−2

with the new approach, resulting in an allocation that is
optimal is impossible to obtain using the former branch and
bound tree. The resulting trajectories on the three information
maps are presented in Fig. 5.

Our approach also uniquely allows for scenarios where all
robots start simultaneously, further increasing computational
speed. Such an approach has not been discussed in prior
works. Table I illustrates the specific benefits offered by the
proposed approach in the last column. The first and second
columns indicate prior work [4] and a naive extension of [4]
to relax constraint 6, respectively.

The specific speedups obtained over [4] are presented in



(a) R for M1 (b) R for M2 (c) B,G for M3

Fig. 5: Trajectories of robots R,B,G on three information
maps M1,M2,M3

[4] Extension to [4] Proposed
Optimal Solution No Yes Yes
Nodes Explored 15 30 10

Leverages identical robots No No Yes

TABLE I: Key benefits of the proposed framework

Table II. The results show an order of magnitude speedup
when 4 robots are paired with a varied number of information
maps ranging from 4 maps to 9 maps.

#maps 4 5 6 7 8 9
Extension to [4] 98 274 678 1923 6324 14763

Proposed 27 48 91 192 425 884

TABLE II: Planner run times (in sec.) for 4 robots

IV. MINIMUM BOUNDING SPHERE (MBS)
SCALARIZATION

In this work, we propose an approach for SA-MO-ES
that focuses on computing the optimal scalarized information
map directly. This is done without the need to calculate
the entire Pareto-Optimal front, and the goal is to minimize
the worst-case coverage or highest ergodic metric on any
information map. The highest ergodic metric achieved on
the individual maps depends on the scalarized information
map used to optimize the trajectory of the agent. When con-
sidering the minmax optimality criterion, the best-scalarized
information map is determined by minimizing the maximum
distance between the scalarized map and the individual maps.
This concept is similar to solving the minimum enclosing
circle problem. Thus, we can compute the required scalarized
map as the center of the minimum bounding sphere of the
information maps in Fourier space.

The minimum bounding sphere for a set of points
{p1, p2, ·, pn} is unique and is the sphere with minimum
volume such that all the points lie within or on the surface
of the sphere.

In an ideal scenario, a trajectory optimized towards the
center of the minimum bounding sphere will precisely con-
verge to that distribution and the ergodic metric in the
trajectory optimization converges to zero. By definition of
minimum bounding spheres, the maximum distance of the
center of the sphere to any of the information maps is equal
to the radius of the sphere (derived later in this section).
As a result, the maximum ergodicity of this trajectory on
any of the individual information maps will be proportional
to the square of the radius of the sphere. Importantly, this
result holds true regardless of the starting position of the
agent being considered and is the minmax ergodic metric

that can be achieved when the agent is assigned multiple in-
formation maps. Consequently, for SA-MO-ES, we compute
the optimal scalarized map by determining the center of the
minimum bounding sphere (MBS) of the information maps
in Fourier space.

Now, let us suppose the trajectory optimized does not
achieve an ergodic metric of zero against the center of the
minimum bounding sphere. Even in this scenario, we can
bound the maximum ergodic metric of the trajectory on
the maps as stated in Theorem 1. Consider the following
variables defined in Table III.

Theorem 1: Consider an agent tasked to cover a domain
subject to information maps Φ = {φ (1),φ (2), · · ·φ (no)}. Let
the weighted Fourier coefficients (features) of each element
of Φ be represented as Ms = {M1,M2, · · ·Mno} where Mi =

f eature(φ (i)) and hence Mi ∈ RK2
. Let C and r represent

the center and radius of the minimum bounding sphere of
Ms. Consider q∗C to be the trajectory obtained by ergodic
trajectory optimization against getMap(C). Let the ergodic
metric of q∗C on getMap(C) be EC. Then the ergodic metric
of q∗C on any φ (i) ∈ maps is at most EC + r2 +2r

√
EC.

Proof: [Proof of Theorem 1] The minimum bounding
sphere of the feature vectors in Ms is represented by the
center and radius C and r respectively. The center C is
a feature vector in RK2

and can be reconstructed to an
information map, using getMap, that can be used to optimize
for a trajectory. Let the feature vector of the average of Φ be
W . The locally optimal ergodic trajectory of an agent when
optimized against getMap(C) and getMap(W ) is q∗C and q∗W

(a)
Fig. 6: Minimum bounding sphere scalarization: The
figure represents three information maps, as feature vectors
in Fourier space {M1,M2,M3}, that are assigned to one agent.
The trajectories q∗C and q∗W are the locally optimal ergodic
trajectory of the agent when optimized against the infor-
mation maps represented by getMap(C) and getMap(W )
respectively.



TABLE III: MBS scalarization variables definition: Variables and functions used in the proof

Variable Explanation
no Number of assigned information maps

M = {φ (1),φ (2), · · ·} with φ (i) : W → R Set of information maps or information distributions
K ∈ R Number of Fourier basis functions used

F: 2D distribution → RK2
Fourier transform: Outputs vector of Fourier coefficients

λ ∈ RK2
Weight for each corresponding Fourier coefficient

feature: 2D distribution → RK2 Outputs a vector of weighted Fourier coefficients:
feature(A) = λ 0.5 ⊙F(A)

C ∈ RK2 Center of the MBS of features of assigned maps,
Can be reconstructed into an information map

r ∈ R Radius of the MBS of features of assigned maps
getMap: RK2 → M Reconstructs the information map from a feature vector

W ∈ RK2 Feature of the average of the assigned information maps,
i.e., W = f eature( 1

no
∑i∈[1,no ] φ

(i))

Q = {q,q : [0,T ]→ W } Set of feasible trajectories for agent considered (T ∈ R+: time horizon)
E : M ×Q → R Computes the ergodic metric of q ∈ Q on φ ∈ M

q∗
φ

: [0,T ]→ W
The locally optimal ergodic trajectory on map

q∗
φ

= argmin∀q∈Q E (φ ,q)

Eφ ∈ R The minimum ergodic metric achieved by the agent on the map
Eφ = min∀q∈Q E (φ ,q)

Ew: M no ×Q → R
Computes the highest ergodic metric of q ∈ Q on the maps:

Ew = maxi∈[1,no ] E (φ (i),q)

with ergodic metric EC and EW respectively:

E (getMap(C),q∗C) = EC

E (getMap(W ),q∗W ) = EW

Next, we can derive the relation between Euclidean dis-
tance in the feature space and the ergodic metric. In the fea-
ture space, the Euclidean distance between two distributions
is computed as:

dist(A,B) =
√

∑( f eature(A)− f eature(B))2 (3)

=
√

∑(λ 0.5 ⊙ f (A)−λ 0.5 ⊙ f (B))2 (4)

=
√

∑
k∈K

λk( f (A)k − f (B)k)2 (5)

If we consider A ∈ M and B ∈ q, then the corresponding
ergodic metric can be computed as:

E (A,B) = ∑
k∈K

λk( f (A)k − f (B)k)
2

Thus equation (5) becomes:

dist(A,B) =
√

E (A,b) (6)

dist2(A,B) = E (A,B) (7)

If E (getMap(C),q∗C) ̸= 0, then the trajectory did not con-
verge to C. In that case, the center of the minimum bounding
sphere C, the feature vector of one of the information maps
Mi, and the agent’s trajectory q∗C form a triangle as illustrated
in Figure 6 for the 2D case. Then using triangle inequality
we can write:

dist(Mi,q∗C)≤ dist(Mi,C)+dist(C,q∗C)

Since, the distances are positive, by squaring both sides
we get:

dist2(Mi,q∗C)≤ dist2(Mi,C)+dist2(C,q∗C)

+2dist(Mi,C)dist(C,q∗C)
(8)

Substituting equation (7) in equation (8), we get:

E (Mi,q∗C)≤ dist2(Mi,C)+EC +2∗dist(Mi,C)∗
√

EC (9)

By definition of the minimum bounding sphere, the max-
imum distance of any feature vector from the center of the
sphere is equal to the radius of the sphere. Further, since
equation (9) is true for all Mi ∈Ms, we can bound the highest
ergodic metric achieved on individual maps to be:

Ew(Ms,q∗C)≤ r2 +EC +2r
√

EC (10)

And a consequence of theorem 1 is the statement in the
next corollary.

Corollary 1.1: The highest ergodic metric of q∗C on any
map does not exceed EC + 2r

√
EC more than that achieved

by q∗W on the information maps.
Since r2 is the minimum maximum ergodic metric that

can be achieved when Ms are assigned to a single agent (by
definition of minimum bounding spheres), we also have:



Ew(Ms,q∗W )≥ r2 (11)

Thus, substituting equation (11) in equation (10), we can
get an expression showing that the highest ergodic metric on
the maps for the trajectory optimized against the center of
the minimum bounding sphere does not exceed EC +2r

√
EC

more than that achieved by the trajectory optimized against
the average of the information maps.

Ew(Ms,q∗C)≤ Ew(Ms,q∗W )+EC +2r
√

EC

This shows that even when the time average statistics of
the trajectory does not converge exactly to the center of
the minimum bounding sphere, the minmax metric achieved
will be bounded by EC + r2 + 2r

√
EC, where EC is the

ergodic metric of the trajectory optimized against the center
of the minimum bounding sphere, r2 is the best minmax
ergodic metric achievable and r is the radius of the minimum
bounding sphere.

V. CONCLUSION AND FUTURE WORK

The multi-agent multi-objective ergodic search problem is
an allocation problem that is NP-hard to solve optimally.
An exhaustive search algorithm, while optimal in allocation,
quickly becomes intractable in terms of runtime as the
number of agents and maps increases. We thus present a
branch and bound algorithm that helps reduce the average
runtime by a factor of 16 while still providing the optimal
allocation scheme. Further, we present an analytical approach
to compute the minimax point on the Pareto optimal front for
a Single Agent Multi-Objective Ergodic (SA-MO-ES) Search
pairing. This eliminates the need to compute the entire Pareto
front for every pairing of SA-MO-ES kind. Future steps for
this work include leveraging the minimum bounding sphere
approach to create clusters of maps that can then be paired
with robots as part of an allocation. We conjecture that such
a clustering strategy will generate an incumbent solution that
is close to the optimal, allowing for significant pruning of the
search tree in our branch and bound algorithm and leading
to even higher computation speeds.

REFERENCES

[1] J. Berger, N. Lo, and M. Noel, “A new multi-target, multi-agent search-
and-rescue path planning approach,” International Journal of Computer
and Information Engineering, vol. 8, no. 6, pp. 978 – 987, 2014.

[2] F. M. D. Fave, S. Canu, L. Iocchi, D. Nardi, and V. A. Ziparo, “Multi-
objective multi-robot surveillance,” 2009 4th International Conference
on Autonomous Robots and Agents, pp. 68–73, 2000.

[3] S. G. Satpute, P. Bodin, and G. Nikolakopoulos, “Cooperative planning
for multi-site asteroid visual coverage,” Advanced Robotics, vol. 35, no.
21-22, pp. 1332–1346, 2021.

[4] A. K. Srinivasan, G. Gutow, Z. Ren, I. Abraham, B. Vundurthy, and
H. Choset, “Multi-agent multi-objective ergodic search using branch
and bound,” in 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2023, pp. 844–849.
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