
Enhancing Lifelong Multi-Agent Path-finding by Using
Artificial Potential Fields

Arseniy Pertzovsky, Roni Stern, Roie Zivan, Ariel Felner

Abstract

Artificial Potential Fields (APFs) is a well-known method
for deploying mobile agents. We explore the use of APFs
to solve Multi-Agent Path Finding (MAPF) and Lifelong
MAPF (LMAPF) problems. In these problems, a team of
agents must move to their goal locations without collisions,
whereas in LMAPF new goals are generated upon arrival. We
show that direct usage of APFs is ineffective for solving chal-
lenging cases. As an alternative, we incorporate APFs into
Temporal A∗ (TA∗+APF) and SIPPS (SIPPS+APF), which
are single-agent path-finding algorithms that are used by
common MAPF algorithms. We implemented TA∗+APF and
SIPSS+APF within standard MAPF algorithms and evaluated
them experimentally. Our results show that while APFs are
not beneficial when solving MAPF problems, they are very
effective when solving LMAPF, yielding up to a 7-fold in-
crease in overall system throughput.

1 Introduction
Artificial Potential Fields (APFs) (Khatib 1986) is a physics-
inspired approach for the deployment of mobile agents in an
environment with obstacles. The standard way to use APFs
is to consider each agent as a particle that is moved based on
attraction and repulsion forces that are applied to it. Typi-
cally, obstacles and other agents exert repulsive forces while
the goal applies an attractive force (Koren and Borenstein
1991). APFs have been used to solve many motion plan-
ning problems (Mac et al. 2016; Hagelback and Johansson
2009; Daily and Bevly 2008), with successful applications
in obstacle avoidance of an unmanned aircraft (Rezaee and
Abdollahi 2012), collision avoidance systems for automated
vehicles (Wahid et al. 2017) and more (Mac et al. 2016). In
this work, we explore how APFs can be used to solve Multi-
agent Pathfinding (MAPF) problems.

MAPF is the problem of finding a set of paths for a
group of agents such that if each agent follows its path
it ends up in its goal location without colliding with any
other agent (Stern et al. 2019). Instances of MAPF exist in
robotics (Barták et al. 2019), automated warehouses (Wur-
man, D’Andrea, and Mountz 2008; Salzman and Stern
2020), digital entertainment (Ma et al. 2017) and more (Mor-
ris et al. 2016). Solving MAPF problems can be compu-
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tationally difficult since all agents may move concurrently,
and thus the number of actions to consider at every point in
time is exponential in the number of agents. Indeed, for com-
mon optimization criteria finding an optimal solution for a
given MAPF problem is NP-hard (Yu and LaValle 2013;
Surynek 2010). Popular optimal and suboptimal algorithms,
such as Prioritized Planning (PrP) (Silver 2005), Conflict-
Based Search (CBS) (Sharon et al. 2015), and Large Neigh-
borhood Search (LNS) (Li et al. 2021a), mitigate to some
extent the combinatorial challenge of planning for multiple
agents by path planning for each agent individually and im-
posing different forms of constraints to avoid collisions.

Still, using existing algorithms often results in congestion
occurring in areas of the environment that are shared by the
shortest paths of multiple agents. This congestion problem is
exacerbated when solving MAPF problems in a lifelong set-
ting (LMAPF) (Li et al. 2021a), which is an important type
of online MAPF (Švancara et al. 2019) in which an agent
receives a new goal location whenever it reaches its current
goal location. When solving LMAPF, congested areas tend
to get more and more congested over time, resulting in di-
minishing overall system efficiency. Using APFs is a natu-
ral approach to encourage agents to avoid congested areas,
adding repulsion forces not only for avoiding obstacles but
also for avoiding the paths of other agents.

We begin our investigation of using APFs for solving
MAPF problems by following a simple, myopic approach:
each agent plans its next move based on the forces of APFs,
where an agent’s goal has an APF that attracts it and all other
agents have an APF that repulses it. The resulting MAPF al-
gorithm (Direct APF) compares poorly with existing MAPF
algorithms on standard MAPF benchmarks. Apparently, in
such cases, relying on attraction and repulsion forces is too
myopic, and longer-horizon path planning is needed.

As an alternative, we explored using APFs within exist-
ing MAPF solvers. First, we consider PIBT (Okumura et al.
2022), LaCAM (Okumura 2023a), and LaCAM∗ (Okumura
2023b), which are MAPF algorithms that search the space of
configurations, where a configuration is a set of all agents’
locations in a given time-step. We introduce APFs to these
algorithms by incorporating APFs into the process of con-
figurations’ creation.

Second, we consider using single-agent pathfinding al-
gorithms to plan for the individual agents under different



types of constraints. Temporal A∗ (TA∗) (Silver 2005) and
SIPPS (Li et al. 2022) are the most prevalent examples of
such algorithms. We propose modified versions of these al-
gorithms, called TA∗+APF and SIPPS+APF, that change the
cost of agents’ actions to consider the APFs created by other
agents who have already planned their paths. Consequently,
the path returned for an agent does not optimize only for al-
lowing the agent a fast arrival to its goal, but also for avoid-
ing areas congested by other agents.

We evaluated our approaches experimentally on a range of
standard MAPF benchmark problems. The results show that
our APF-augmented algorithms have marginal merit when
solving classical MAPF problems. Yet they are very effec-
tive when solving LMAPF, yielding up to a 7-fold increase
in overall system throughput.

2 Definition and Background
A classical MAPF problem is defined by a tuple ⟨k,G, s, g⟩
where k is the number of agents, G = (V,E) represents an
undirected graph, s : [1, ..., k] → V maps an agent to a start
vertex, and g : [1, ..., k] → V maps an agent to a goal vertex.
Time is discretized into time-steps. In every time-step, each
agent occupies a single vertex and performs a single action.
An action is a function a : V → V such that a(v) = v′.
There are two types of actions: wait and move. The result
of a wait action at some time-step is that the agent will stay
at the same vertex v at the next time-step. The result of a
move action at some time-step is that the agent will move
to an adjacent vertex v′ in the graph (i.e., (v, v′) ∈ E). A
single-agent path for agent ai, denoted πi, is a sequence of
actions πi that is applicable starting from si and ends up
in gi. A solution to a MAPF is a set of single-agent paths
π = {π1, . . . , πk}, one per agent, that do not conflict. We
consider two types of conflicts: vertex conflict and swap-
ping conflict. Two single-agent paths have a vertex conflict
if they aim to occupy the same vertex at the same time, and
a swapping conflict if they aim to traverse the same edge at
the same time from opposing directions. The sum-of-costs
(SOC) of a MAPF solution π is the sum over the lengths of
its constituent single-agent paths. It is often desirable to find
MAPF solutions that have minimal SOC.

Some MAPF algorithms are complete and SOC-optimal,
i.e., guaranteed to return a valid optimal solution, if such
a solution exists, w.r.t. its SOC. Primary examples of such
complete and optimal MAPF algorithms are CBS (Sharon
et al. 2015), ICTS (Sharon et al. 2013), A∗+OD+ID (Stand-
ley 2010), M* (Wagner and Choset 2011), BCP (Lam et al.
2022), and SAT-MDD (Surynek et al. 2016). Other MAPF
algorithms are complete but suboptimal, i.e., they are guar-
anteed to find a solution if such exists but its cost may not
be optimal. Examples of algorithms of this family include
Push-and-Swap (Luna and Bekris 2011) and Kornhauser’s
algorithm (1984). In this work, we focus on incomplete
MAPF algorithms, which are very common in real-world
MAPF applications and are often much faster and can scale
better than any complete algorithm (Li et al. 2021a; Leet,
Li, and Koenig 2022a). We present some examples of in-
complete algorithms next.

Prioritized Planning (PrP) and LNS2 PrP (Bennewitz,
Burgard, and Thrun 2001) is a simple yet very popular
MAPF algorithm to grasp and implement (Laurent et al.
2021; Leet, Li, and Koenig 2022b; Varambally, Li, and
Koenig 2022; Zhang et al. 2022; Chan et al. 2023). In PrP,
the agents are first ordered, and they plan sequentially based
on this order. When the ith agent plans, it is constrained to
avoid the paths chosen for all i− 1 agents that have planned
before it. PrP is agnostic to how a single-agent path is found
for each agent that satisfies these constraints. Such single-
agent paths are found by a low-level search algorithm such
as Temporal A* (TA∗) or SIPPS, which are described below.
PrP is simple and fast but might not be very effective in very
dense environments due to possible deadlocks.

Large Neighborhood Search (LNS2) (Li et al. 2022) is an
incomplete MAPF algorithm that aims to overcome some
of the pitfalls of PrP. LNS2 starts by assigning paths to the
agents even though they might conflict. LNS2 then applies
a repair procedure, where PrP is used to replan for a subset
of agents, aiming to minimize conflicts with other agents.
LNS2 repeats this repair procedure until the resulting solu-
tion is conflict-free.

Temporal A∗, SIPP, and SIPPS Temporal A∗, SIPP, and
SIPPS are algorithms that plan a path for a single agent
under constraints. They are used in many MAPF algo-
rithms such as PrP and LNS2 described above but also by
CBS (Sharon et al. 2015), PBS (Ma et al. 2019).

Temporal A∗(TA∗) uses A∗ on the spatio-temporal state-
space in which a state is a pair (v, t) where v is a vertex in
G and t is a time-step. TA∗ receives the start and goal loca-
tions of an agent, along with a list of vertex- and edge con-
straints. A vertex constraint is a pair (v, t) specifying that the
agent must not plan to be at v at time-step t. An edge con-
straint (e, t) specifies that the agent must not traverse edge
e at time t in either direction. TA∗ returns the shortest paths
that avoids the given constraints.

Safe Interval Path Planning (SIPP) (Phillips and
Likhachev 2011) improves upon TA∗ by dividing time into
intervals instead of timesteps to represent the time dimen-
sion. SIPP performs an A* search on a state space where
each state is defined by a vertex and a safe (time) interval,
representing that the agent occupies that vertex in this time
interval, and that this does not violate any given constraint.

Safe Interval Path Planning with Soft Constraints
(SIPPS) (Li et al. 2022) generalizes SIPP to accept both hard
and soft constraints. The hard constraints are to avoid con-
flicts with the other agents selected for replanning, and the
soft constraint is to avoid conflicts with all other agents. It
returns a path that does not violate any hard constraints and
minimizes the number of soft constraints violated. SIPPS is
designed to run within LNS2.

PIBT and LaCAM PIBT (Okumura et al. 2022) is a state-
of-the-art MAPF algorithm that solve MAPF problems by
searching in the configuration space. A configuration here
is a vector representing the agents’ locations in some time-
step. PIBT searched in this space in a greedy and myopic
manner, starting from the initial configuration of the agents
and iteratively generating a configuration for the next time-



step until reaching a configuration where all agents are at
their goals. PIBT generates configurations recursively, mov-
ing every agent toward its goal while avoiding conflicts with
previously planned agents. To avoid deadlocks, PIBT em-
ploys priority inheritance and backtracking techniques.

PIBT is very efficient computationally but is incomplete
since it searches greedily in the configuration space. La-
CAM (Okumura 2023a) also searches the configuration
space using a similar approach to generate configurations.
To ensure completeness, LaCAM adds constraints to the
configuration generation process to ensure it eventually can
reach every possible configuration.

2.1 Lifelong MAPF (LMAPF)
Lifelong MAPF (LMAPF) (Li et al. 2021a) is an important
type of online MAPF (Švancara et al. 2019). In LMAPF
agents continuously receive new tasks from a task as-
signer (outside of our path-planning system). When an agent
reaches its current goal it receives a new goal to travel to
from the task assigned. The task in classical MAPF is to
minimize the SOC or makespan, as explained above. Since
solving LMAPF involves solving multiple MAPF problems,
the efficiency of LMAPF algorithms is usually measured by
the overall system throughput achieved when using them,
which is measured by the number of tasks fulfilled in a given
period of time (Li et al. 2021b; Morag, Stern, and Felner
2023).

The Rolling-Horizon Collision Resolution framework
(RHCR) (Li et al. 2021b), solves MAPF problems by repeat-
edly planning the next k steps (k is the horizon parameter)
to execute based on the agents’ current locations and goals.
Agents then move w ≤ k steps, where w is a window param-
eter, and the process repeats. RHCR is particularly useful in
LMAPF as new goals are generated on the fly and there is
no point in planning long paths.

Congestion avoidance techniques Several approaches
were proposed to avoid the emergence of congested areas
in LMAPF. Skrynnik et al. (Skrynnik et al. 2024) developed
a reinforcement learning (RL) approach for a partially ob-
served MAPF variant. Shuai et al. (Han and Yu 2020) used
database heuristics tailored for every map separately. Chen
et al. (Chen et al. 2024) exploit time-independent routes to
compose a heuristic for the PIBT algorithm that predicts
future expected congestion. Finally, Hen et al. (Han and
Yu 2022) present a Space Utilization Optimization (SUO)
heuristic for clever tie-breaking and allows to preserve op-
timality guarantees. In our work, we do not restrict observ-
ability, there are no requirements for learning procedures or
optimality guarantees and we are not tied to any specific al-
gorithm. Therefore, we do not compare our work with these
approaches.

2.2 Artificial Potential Fields
A majority of the work that was done about APFs is about
single-agent motion planning in continuous spaces (Bar-
raquand, Langlois, and Latombe 1992; Fox, Burgard, and
Thrun 1997; Wang and Chirikjian 2000; Daily and Bevly
2008; Mac et al. 2016; Zhang, Lin, and Chen 2018; Shin

and Kim 2021). Vadakkepat et al. (2000) studied continu-
ous spaces with moving obstacles. Hagelbäck et al. (2008;
2009) used APFs in real-time strategy games to avoid ob-
stacles. Among those works that dealt with multiple agents:
Liu et al. (2017) used APFs in a problem of formation con-
trol; Dinh et al. (2016) introduced Delegate MAS that sim-
ulated food foraging behavior in ant colonies; and many
works (Semnani et al. 2020; Fan et al. 2020; Agrawal
et al. 2022; Dergachev and Yakovlev 2021) introduced al-
gorithms for reinforcement learning (RL) tasks that incor-
porated together with Optimal Reciprocal Collision Avoid-
ance (ORCA) (Van den Berg et al. 2011) or Force-based mo-
tion planning (FMP) (Semnani et al. 2020) in them. Some
RL environments include the APFs as part of the environ-
ment (Bettini et al. 2022). To the best of our knowledge, we
are the first to apply APFs to solve MAPF problems.

3 Direct Artificial Potential Fields
In this section, we present the Direct APF (DAPF) algo-
rithm. DAPF embodies a direct application of APFs to solve
MAPF problems. In DAPF, at every time-step each agent ai
sums a set of repulsion and attraction “forces” and moves
in the next time-step in the corresponding direction. These
“forces” consist of repulsion from the locations of all other
agents and attraction to the location of the goal of ai. We
experimented with different functions for these repulsion
and attraction “forces” in our MAPF context. The following
functions worked reasonably in our experiments.

Repulsion forces For every agent ai, we create a repulsion
function APFi based on its current location vi.

APFi(v) =

{
0 if d(vi, v) > dmax

w · γ−d(vi,v) otherwise
(1)

where dmax, γ, and w are predefined parameters and d(vi, v)
is the minimal distance between v and vi.1 The w parameter
controls the strength of the repulsion, γ controls the rate of
decay, i.e., how fast its intensity of the repulsion declines
while moving away from its source, and dmax defines how
far away from vi the repulsion affects the cost.2

Attraction forces For every agent ai, we create an attrac-
tion function GoalAPFi, based on its goal gi:

GoalAPFi(v) =

{
h(gi, v) for agent ai
0 for other agents

(2)

where h(gi, v) is a precalculated heuristic estimation on the
distance from vertex v to gi. Given these repulsion and at-
traction functions, DAPF moves in every time-step each
agent ai located at vi to the adjacent location v′i that min-
imizes

Total APF (v′i) =
∑
j ̸=i

APFj(v
′
i) +

∑
j

GoalAPFi(v
′
i)

(3)
1This could be the exact minimal distance in the graph or some

estimation heuristic on it. In our experiments, every agent location
is associated with a cell in a grid. We used Manhattan distance.

2We illustrate this in the supplementary material.



Ties are broken randomly. Collisions are avoided in a prior-
itized planning manner. The agents plan sequentially (with
some random order), where every agent cannot occupy the
current locations of other agents and the locations reserved
by previously planned agents.

(a) (b)

Figure 1: Example illustrations. (a) An instance that cannot
be solved by DAPF. Solid lines point to goals. The dotted
lines depict a PrP solution. (b) Two agents solve LMAPF.
The X shapes represent goal locations. A solid blue line
shows the direction of a chosen path for the blue agent.
Dashed red lines represent alternative k-length paths for the
orange agent. The agent will prefer the bottom path because
of the APFs of a blue agent.

DAPF is very efficient computationally. In every itera-
tion, each agent incurs a runtime of O(k · d2max), where
k is the number of agents and dmax is the radius of influ-
ence of APFs. So, the overall runtime complexity of DAPF
is O(k2 · d2max ·N), where N is the number of iterations.

In spaces with relatively few obstacles and a small number
of agents, using DAFP is very fast. However, it performed
poorly in our experiments when the environment became
more dense. This is because there are cases where long-term
planning is needed and a naı̈ve usage of APFs, as done by
DAPF, is insufficient no matter which parameters we choose.
For example, consider the MAPF problem in Figure 1 (a).
Solid lines point to the agents’ goal locations. Here, DAPF
fails to find a solution. Agents are pushed in and pulled back
to the middle corridor, preventing agents from swapping po-
sitions. The possible solution is for the orange agent to by-
pass the obstacle and reach its goal (dashed line in Figure 1
(a)). In the following sections, we propose a range of tech-
niques for using APFs within existing MAPF algorithms.

4 PIBT and LaCAM with APFs
Both PIBT (Okumura et al. 2022) and LaCAM (Okumura
2023a) use a heuristic to prioritize the agents’ actions when
generating configurations. In these algorithms, each agent
chooses its next action by sorting the vertices adjacent to it
based on a heuristic estimate of their distance to the goal.

We propose to add APFs in these heuristic estimates.
Specifically, when sorting the vertices adjacent to the k′-
th agent, we consider the actions chosen by the previously
planned agents (1, . . . , k′ − 1) with Equation 1. Then, we

sum all the APFs for every neighboring vertex as follows:

costAPF (v) =
∑

i∈{1,...,k′−1}

APFi(v) (4)

where APFi(v) is defined above (Eq. 1). Finally, we sort
the vertices according to h(v) + costAPF (v) values. This
use of APFs is reminiscent of the DAPF algorithm pre-
sented above, and may suffer from similar limitations. The
overhead incurred by APFs in terms of runtime complexity
is O(k · d2max) per time-step, corresponding to computing
costAPF for all k agents and nodes in radius dmax. There-
fore, the total overhead is O(k·d2max ·l), where l is the length
of the longest path.

5 Temporal A∗ with APFs
As noted above, many MAPF algorithms internally use TA∗

to find paths for individual agents. We propose to use APFs
in TA∗ such that the resulting path not only avoids collisions
with the paths of other agents (which is a hard constraint)
but also attempts to keep distance from them by considering
the repulsion of their APFs. We refer to our TA∗ variant as
Temporal A∗ with Artificial Potential Fields (TA∗+APF).

TA∗+APF is a single-agent path-finding algorithm. It ac-
cepts as input a tuple ⟨G(V,E), s, g, {π1, . . . , πk′}⟩ where
G is the graph of possible locations (V ) the agent can occupy
and allowed transitions between them (E); s and g are the
start and goal locations of the path planning agent, respec-
tively; and πi is a path for agent ai for every i = 1, . . . , k′.
The output of TA∗+APF is a path from s to g that does not
conflict with any of the paths π1, . . . , πk′ . The given set of
paths {π1, . . . , πk′} depend on the particular MAPF algo-
rithm in use. For example, in PrP TA∗+APF will be given the
paths planned for the higher-priority agents. In LNS2, the
given set of paths includes the paths already planned for the
other agents within the neighborhood of the planning agent.

To bias the resulting path to keep distance from these
paths, TA∗+APF creates for every path πi ∈ {π1, . . . , πk′} a
repulsion APF function APFi that maps every location-time
pair (v, t) to a real number representing the added penalty
incurred by planning to occupy v at time t. TA∗+APF con-
siders these penalties when computing the cost of every
move. There are multiple ways to define these repulsion APF
functions and to aggregate them into a single penalty cost.
We experimented with several options, and have found the
following implementation to work best in our experimental
setup. Similar to DAPF, the APF induced by agent ai on lo-
cation v and time t is computed as follows:

APFi(v, t) =

{
0 if d(v, πi[t]) ≥ dmax

w · γ−d(v,πi[t]) otherwise
(5)

where dmax, γ, and w are predefined parameters and
d(v, t, πi[t]) is the minimal distance between v and πi[t].3
The purpose of each parameter is as described in Section 3.
The only difference between this computation method com-
pared to the one used by DAPF (Eq. 4) is the introduction

3Again, we used Manhattan distance.



of the time dimension. Hence, in each time-step t′ an agent
considers only APFs that are calculated at t′. In the special
case in which dmax = 0, APFi(v, t) is always 0. This cor-
responds to plain TA∗ that only considers conflicts where
agents are exactly at the same location (distance 0 for each
other). To aggregate all the APFs we used a simple sum.
That is, the APF cost of moving into location v at time is

costAPF (v, t) =
∑

i∈{1,...,k′}

APFi(v, t) (6)

We pondered incorporating our APF-inspired cost func-
tion within TA∗ in two places: either as part of the heuristic
evaluation function or as part of the edge cost function. For a
node n generated by TA∗, the former adds a penalty to h(n)
and the latter adds a penalty to g(n). We initially incorpo-
rated our APF-inspired cost function in h(n) and observed
poor results. To understand these results, consider what each
value (h and g) represents and its objective. h(n) represents
an estimate of the cost from n to the goal. It is designed to
guide the search towards finding the goal faster. In contrast,
g(n) represents the cost of the best path found so far from the
start to n. A∗, and subsequently TA∗, are designed to min-
imize the edge cost function, and correspondingly find the
path to the goal with the lowest g-value. Thus, incorporating
APFs in the heuristic functions does not, directly, affect what
path TA∗ returns, but rather, how quickly the search finds
it. In contrast, incorporating APFs in the edge cost function
(and thus in the g value) directly results in TA∗ returning
paths that optimize for avoiding other agents’ paths.

Figure 2: The orange circle and the orange square are the
agent’s start and goal locations, respectively. x represents the
cost of APFs. A∗ is executed. g, h and f are the components
of A∗ nodes. (a) With x ≤ 2 an agent always picks a red
path, wherever x is added. (b) With x > 2 the agent picks a
blue path if x is added to g. Otherwise, if x is added to h, it
continues to choose a red path, nonetheless.

Examine Figure 2, where an agent needs to go from the
orange circle to the orange square. The g, h, and f compo-
nents of an A∗ algorithm are presented inside the locations.
The gray zone shows APFs of another agent that adds to the
cost x of moving via the location in the middle left of the
figure. Consider the case where x > 2. A red line is an op-
timal path that A∗ would choose if the costs were added to

an h component (Fig. 2 (a)). A blue line is the optimal path
if the cost is a part of a g component, and this is the variant
that we want to implement (Fig. 2 (b)). In other words, h is
not being aggregated along paths. It is only defined for indi-
vidual locations and only attracts the agent towards the goal.
By contrast, g is being aggregated and an edge with a large
weight will be carried over to all its descendants, and this is
what we want.

Therefore, in TA∗+APF we chose to use our APF-inspired
cost function when computing the g value of a search node,
as follows. Let cost(parent, n) be the cost of moving the
agent from parent to n, and let (v, t) be the vertex and time-
step that node n represents. In TA∗+APF we compute the
g(n) as follows:

g(n) = g(parent)+ cost(parent, n)+ costAPF (v, t) (7)

TA∗+APF runs TA∗ according to f(n) = g(n)+h(n), using
this modified g(n) function.

Figure 1(b) illustrates an example case, where APFs help
to pick a better path out of two options. In this example, two
agents work in a RHCR framework. The blue agent plans
first and goes directly to its goal. An orange agent has two
alternative paths around the obstacle. However, the APFs of
the blue agent (gray circles) will cause the orange agent to
prefer the bottom path and therefore avoid future conflicts.

Using APFs incurs some computational overhead, com-
pared to vanilla TA∗. This overhead is due to the need to
compute APFs for every newly generated path. The com-
putational complexity of generating an APF for the path of
a single agent is O(d2max · l), where d2max is the maximal
number of nodes affected by the APF induced by an agent
occupying a single vertex at a specific time step; and l is the
length of the longest path. This computation is done for each
of the k agents, adding a total overhead of O(k · d2max · l).

6 SIPPS with APFs
A more recent state-of-the-art low-level solver in multiple
MAPF algorithms is SIPPS (Li et al. 2022). As was de-
scribed in the background section, SIPPS is an enhanced
version of TA∗, that uses time intervals instead of time-steps
and accepts a set of soft constraints defined by paths of pre-
viously planned agents. Moreover, SIPPS orders its nodes
in the open list differently from TA∗. First, it sorts the open
list according to c(n), which tracks the amount of soft col-
lisions (violated soft constraints, caused by a collision with
another path). Then, the secondary sort (between the nodes
with the same c(n) value) is executed according to f(n) as
in TA∗. The g(n) component equals the lowest value in the
node’s time interval. This way, SIPPS ensures that the found
path minimizes the number of soft collisions. SIPPS does
not guarantee optimally of the length of the path, and thus
is often used within a suboptimal MAPF algorithm such as
EECBS (Li, Ruml, and Koenig 2021).

Similar to TA∗+APF we propose to use APFs so that the
agents will try to keep a distance from each other and, hope-
fully, arrive faster to their goals. We refer to our SIPPS vari-
ant as SIPPS with Artificial Potential Fields (SIPPS+APF).

Because the sorting of the open list in SIPPS+APF is exe-
cuted according to two components, first c(n) and then f(n),



we explored incorporating APFs separately in each of these
components. We first tried to append APFs to c(n) only and
the effect was modest. Then, we tried to append APFs only
to the g(n) component as in TA∗+APF and the improve-
ment was also small. Nevertheless, the combination of both
resulted in a significant boost. Hence, the final formal defi-
nition is presented as follows.

costAPF (n) = max
t∈[tnstart,t

n
end)

∑
i∈{1,...,k′}

APFi(v, t) (8)

Where APFi(v, t) is defined in TA∗+APF, and [tnstart, t
n
end)

is the current safe interval of the n node. tnstart and tnend are
the beginning and the end time-steps of the interval. In other
words, costAPF (n) represents the highest APFs an agent
can encounter during its time interval. In SIPPS+APF we
compute the g(n) as follows:

g(n) = tnstart + costAPF (n) (9)

And c(n) is computed as follows:

c(n) = count soft collisions(n) + costAPF (n) (10)

Here, tnstart is the beginning of the n’s safe interval, and
count soft collisions(n) is an internal SIPPS function that
counts soft collisions. SIPPS+APF runs SIPPS and first pri-
oritizes nodes according to small c(n) values. In case of a
tie, it moves to the secondary priority and prefers nodes with
smaller f(n) = g(n) + h(n).

The analysis of the runtime complexity overhead incurred
by APFs in SIPPS+APF is similar to the described above
analysis for TA∗+APF. An additional computational cost is
incurred due to maxing over the time steps in the relevant
safe interval (Eq. 8). So, the overhead equals O(k ·d2max ·l2),
where k, dmax, and l are defined as earlier.

7 Experimental Study
We conducted an experimental evaluation comparing the use
of APFs within PrP (Silver 2005), LNS2 (Li et al. 2022),
PIBT (Okumura et al. 2022), LaCAM (Okumura 2023a),
and LaCAM∗ (Okumura 2023b), where PrP and LNS2 are
implemented twice: once with TA∗ and once with SIPPS.
With APF-enhanced versions, this adds up to a total of 14
algorithms. The versions that use APFs are denoted in our
plots by dashed lines. All experiments were performed on
four different maps from the MAPF benchmark (Stern et al.
2019): empty-32-32, random-32-32-10, random-32-32-20,
and room-32-32-4, as they present different levels of diffi-
culty. The number of agents used in our experiments varied
from 50 to 450. We executed 15 random instances per every
number of agents, map, and algorithm. The APF parameters
used were w = 1, dmax = 4, and γ = 2 for TA∗+APF,
w = 0.1, dmax = 3, and γ = 3 for SIPPS+APF, and
w = 0.1, dmax = 2, and γ = 1.1 for APFs in PIBT, La-
CAM, and LaCAM∗, which were observed to work best in
general.4 All algorithms were implemented in Python and
ran on a MacBook Air with an Apple M1 chip and 8GB of
RAM.

4A sensitivity analysis of the impact of these parameters is dis-
cussed later and in the supplementary material.

Negative Results in Standard MAPF In all our standard
MAPF experiments, using APFs in PrP, LNS2, PIBT, and
LaCAM, yielded either identical or inferior results.5 For
PIBT, LaCAM, and LaCAM∗ algorithms, we conjecture that
this is due to the myopic nature of these algorithms, choos-
ing a single step ahead in every iteration. For PrP and LNS2,
we explain these poor results by the fact that the APFs en-
courage the single-agent path planning algorithm (TA* or
SIPPS) to avoid the plans of agents that have already cho-
sen a plan. Thus, the APFs only make the planning harder
while avoiding plans that are already chosen to be part of
the solution. Thus, the expected benefit of APFs — avoiding
congested areas — did not manifest in performance gains.
However, finding plans that avoid congested areas can bring
significant gains in the lifelong setting, where agents con-
tinuously receive new tasks over time. We demonstrate this
in the next set of experiments, which evaluate our APF-
augmented algorithms within the RCHR framework, in a
lifelong MAPF setting.

Lifelong MAPF In this set of experiments, we solved
LMAPF problems using the RHCR framework with the win-
dow and planning horizon parameters set to 5. Every algo-
rithm was limited by 10 seconds for the planning phase. In
planning-failure events, i.e., when an agent could not find a
path within the time limit, we followed Morag et al.’s (2023)
robust MAPF framework using the AllAgents + iStay + Per-
sist configuration. This corresponds to having all agents plan
in every planning period (AllAgents); failing agents stay in
their place (iStay); and all agents that do have a path and can
follow it without conflicts, do so (Persist). In the planning
phase, we executed all algorithms and our experiment halted
after each agent performed 100 steps. The main metric in
the LMAPF experiments is the average throughput of each
algorithm, i.e., the number of times when an agent reaches
its goals before the aforementioned 100 time-steps limit is
reached. As noted above, throughput is the common metric
for measuring the quality of algorithms in the LMAPF liter-
ature (Li et al. 2021b; Song, Na, and Yu 2023; Morag, Stern,
and Felner 2023).

— Figure 3 plots the average throughput of the different
algorithms as a function of the number of agents. The results
for PIBT, LaCAM, and LACAM∗ with and without APFs
were virtually the same, due to the myopic way in which
these algorithms work. Therefore, we only plot in Figure 3
the results of these algorithms without APFs.

As can be seen in Figure 3, using APFs significantly in-
creases the throughput of all other algorithms in all maps.
For example, in the empty-32-32 LNS2 with TA∗+APF
reaches a throughput of around 1400 with 450 agents, which
is approximately 7 times more than the throughput of vanilla
LNS2 for the same number of agents. The observed signifi-
cant advantage of using TA∗+APF within the RHCR frame-
work may suggest that it indeed achieves its intended pur-
pose: biasing agents towards paths that avoid other agents’
paths, reducing future collisions and congestion. As an in-
teresting side phenomenon, we observed the superior per-

5Detailed description of results can be found in the supplemen-
tary materials.



Figure 3: LMAPF: Average Throughput. Dashed lines - APF-enhanced; Solid lines - no APFs

formance of LNS2 algorithms using A∗, compared to LNS2
with SIPPS. It might be due to different search techniques
of A∗, where it prioritizes short paths, and SIPPS, where it
prioritizes paths with minimum soft constraints.

Parameter Sensitivity Analysis Our APF algorithms re-
quire setting several parameters, dmax, γ, and w. Next, we
present a sensitivity analysis for these parameters. As a rep-
resentative example, we focus on the algorithm with the best
performance in our experiments — LNS2 with TA∗+APF.
We show the impact of the TA∗+APF parameters — dmax,
γ, and w — on the overall performance in our LMAPF ex-
periments. We report here only results on the random-32-32-
10 map but similar trends were observed when using other
algorithms and other maps.

Figure 4 plots an average throughput as a function of the
number of agents, for different values of dmax, γ, and w,
respectively. Consider first the impact of varying the dmax

parameter (Fig. 4(a)). Recall that this parameter defines how
far away from an agent’s planned location a potential field
reaches. The results show that setting dmax to either ex-
treme value — too small (dmax=1) or too high (dmax=10)
— yields significantly worse results than setting dmax to 4.
Yet, even in these cases, APF-enhanced LNS2 significantly
outperformed plain LNS2.

Next, consider the impact of the γ parameter (Fig. 4(b)).
Recall that γ defines how fast the impact of the APF de-
creases with the distance from its origin. Setting γ = 1 cor-
responds to an APF that has a uniform effect regardless of
distance, as long as the distance is smaller than dmax. This
assignment for γ =1 yielded even worse results than vanilla
LNS2. All other values of γ yielded much better results,
where γ =2 worked best in this setting.

Finally, consider the impact of the w parameter
(Fig. 4(c)), which determines how much weight should be
given to the cost stemming from APFs as opposed to the
regular cost of moving. The impact of the value of this pa-
rameter is interesting because its preferred value depends on
the number of agents in the problem. For example, w = 2
yielded the best results for problems with 400 agents, while
setting w = 1 was best for the other. We also explored set-
ting different w values for different agents according to their
traveled path length or future path lengths. These methods
did not find any significant improvements, and thus their re-

sults are not reported.

8 Conclusion and Future Work
We investigated whether MAPF can be solved efficiently us-
ing artificial potential fields (APFs). First, we showed that a
direct implementation of APFs in a myopic manner is fast
but may yield poor results. Then, we proposed a way to in-
corporate APFs into the PIBT and LaCAM algorithms. The
resulting algorithms add a bias to the search to avoid passing
near paths of other agents. Next, we proposed to use APFs
in TA∗ and in SIPPS, key components of many MAPF algo-
rithms. Specifically, we incorporated APFs in the calculation
of the g component of TA∗’s node evaluation function and c
and g components of SIPPS’s node evaluation functions.

Experimentally, we showed that APFs do not provide any
advantage for PIBT and LaCAM. Also, APFs in other al-
gorithms did not yield any advantage when solving a sin-
gle offline MAPF problem. However, in the context of life-
long MAPF, we showed that using APFs in TA∗ and SIPPS
is highly beneficial, resulting in significantly higher overall
system throughput.

There are several interesting directions for future work.
One such direction is to explore a more efficient way to in-
corporate APFs into PIBT and LaCAM algorithms. Another
direction is to study how to set the dmax, γ, and w parame-
ters effectively for APFs in TA∗ and SIPPS.
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A Justification for Parameters
To demonstrate the role of each parameter, consider Figure
1. The x-axis is the distance from the agent (in the middle),
the y-axis is the value of APFs, and the height of the red
bars represents the specific APFs cost for the locations of
the specific distance from the agent. All parameters of APFs
are constant, except those we want to stir a bit to see the im-
pact. We stir each parameter separately. We can clearly see
that the w parameter controls the strength of the repulsion
APF (Fig. 1(a)), γ controls the rate of decay, i.e. how fast its
intensity declines while moving away from its source (Fig.
1(b)), and dmax defines how far away from vi the repulsion
APF will influence the cost (Fig. 1(c)).

B Supplementary Sensitivity Analysis
In addition to the examination of TA∗+APF parameters in
the main paper, we present a similar analysis of SIPPS+APF
and PIBT+APF parameters. Recall, that as a representative
example, we focus on the algorithm with the best perfor-
mance in our experiments — LNS2 with TA∗+APF. Here,
we present the results only with random-32-32-10 grid,
however, analogous trends were observed in other algo-
rithms and other grids as well.

B.1 SIPPS+APF
Figure 2 plots an average throughput as a function of the
number of agents, for different values of dmax (Fig. 2(a)),
γ (Fig. 2(b)), and w (Fig. 2(c)). Regarding dmax and γ, al-
most all the values resulted in better throughput, when val-
ues dmax = 3 and γ = 3 were of the best performance. The
trend in w was different. For low values, the results were
almost always better than a vanilla version. For high val-
ues of w the results were inferior to almost every number
of agents, except the dense scenarios, where, for example,
w = 3 succeeded in reaching the highest throughput. In our
experiments, we chose w = 0.1.

B.2 PIBT+APF
Figure 3 also plots an average throughput as a function of the
number of agents, for different values of dmax (Fig. 3(a)), γ
(Fig. 3(b)), and w (Fig. 3(c)). Regarding dmax and γ, there
was no difference in influence between different values of

those parameters. We used dmax = 3 and γ = 1.1. Re-
garding w, the influence was worse with higher values and
remained the same with very low values. We chose w = 0.1
in our experiments.

C MAPF Experiments
In this section, we present results in a standard MAPF set-
ting. The implementation of APFs without the RHCR (Li
et al. 2021) framework (i.e. original algorithms) yields in-
ferior results. This can be described by the fact that the first
agents do not consider others that come afterward and, there-
fore cannot take advantage of their APFs to, potentially,
escape congestion. Whereas in RHCR, the agents may re-
consider several times their paths before arriving at a goal.
Hence, we omit the results without RHCR. For the rest of
the section, all PrP and LNS2 algorithms are implemented
within RHCR, where the window size and horizon depth
were set to 5, which we found to be effective in our ex-
perimental setup. In this set of experiments, a time limit
of one minute was imposed. For the sake of clarity, we do
not report on APF-enhanced versions of PIBT, LaCAM, and
LaCAM∗, as they showed no substantial difference from
their baseline versions. As we mentioned in the main pa-
per, we conjecture that this is due to the myopic structure of
these algorithms, choosing a single step ahead in every itera-
tion. All experiments were performed on four different maps
from the MAPF benchmark (Stern et al. 2019): empty-32-32,
random-32-32-10, random-32-32-20, and room-32-32-4, as
they present different levels of difficulty. The maps are visu-
alized in the plots in Figure 4.

Success Rate Figure 5 presents the success rate (SR) of al-
gorithms in different grids, where the SR is the ratio of prob-
lems that could be solved within the allocated time limit. In
many cases, APFs helped to boost the performance, such as
for PrP versions. But, in some cases, the results were worse
with APFs, than without it, such as in LNS2 versions. Re-
garding the overall view, LaCAM versions succeded in solv-
ing the majority of the problems outperforming others.

Runtime Figure 6 plots the runtime (y-axis) required to
solve a given number of instances (x-axis). This is also
known as a “cactus” chart. The trend is similar to SR metric.
In most cases, the versions of algorithms that used APFs
were able to solve more instances in less time than their



(a) Different w values (b) Different γ values (c) Different dmax values

Figure 1: The influence of parameters’ values on APFs. (a) w controls the strength; (b) γ controls the rate of decay; (c) dmax

defines the radius of influence.

(a) dmax values (b) γ values (c) w values

Figure 2: Throughput for different parameter values of APFs for LNS2 with TA∗+APF .

(a) dmax values (b) γ values (c) w values

Figure 3: Throughput for different parameter values of APFs for LNS2 with TA∗+APF .

counterparts. For example, in empty-32-32 the APF-version
of PrP with A∗succeeded in solving almost twice as many
instances compared to its vanilla variant. On the other hand,
in case of LNS2 in random-32-32-20, the results of APF-
enhanced versions are the same or even poorer.

RSOC Let RSOC denote the ratio between the sum of
costs obtained by an APF-enhanced algorithm and the sum

of costs obtained by the version of the same algorithm that
does not use APFs. That is, RSOC for PrP is the sum of
the costs of PrP with APFs divided by the sum of the costs
of vanilla PrP. This is intended to evaluate the potential im-
pact of using APFs on solution cost. RSOC smaller than one
means APFs reduced the solution cost. Note that we only
compute this ratio for problem instances that were solved



Figure 4: MAPF Grids

by both algorithms. Figure 7 presents the RSOC (y-axis) of
all the benchmark algorithms for each number of agents (x-
axis) for each of our maps. We can see that using APFs does
not reduce the solution cost compared to vanilla versions. On
the contrary, in many cases, it improves the cost. Sometimes,
the improvement is two-fold, e.g., PrP versions in random-
32-32-10 grids with 200 agents.
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